
SuffixDecoding: Extreme Speculative
Decoding for Emerging AI Applications
Gabriele Oliaro, Zhihao Jia, Daniel Campos, Aurick Qiao

NeurIPS 2025 (Spotlight)

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

Challenge: Emerging AI Workloads Suffer from High Latency

⏳ But better accuracy comes at the cost of more generated tokens

Multi-Agent Pipelines Iterative Refinement Self-Consistency

✅ Inference-Time Scaling techniques can improve the output quality

Opportunity: Token Repetitions in Emerging AI Workloads

★ Self-reflection loops
✓ Repeated code/text with minor edits

★ Multiple reasoning paths
✓ Similar reasoning patterns

★ Multi-agent workflows
✓ Shared context across agents

★ Iterative refinement
✓ 100+ lines repeated, 2 modified

💡 To leverage these repetitions, we designed SuffixDecoding!

Change
two lines

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

Speculative Decoding 101: Vanilla Decoding

LLM

prompt

T1 → T2 → T3 → T4

repeat

Speculative Decoding 101: Sequence-Based Speculation

Draft model

prompt

T1 → T2 → Tx → Ty LLM

✅ ✅ ❌ 🗑
T1 T2 Tx T3 Ty’

repeat

Speculative Decoding 101: Tree-Based Speculation

Draft model

prompt

LLM

T1

To

Tq

Tp
Ts

Tr

Tv

Tu

T2

Tx

T3
Tw

T4

Tz

Ty

Causal Mask +

[T1 To T2 Tp Tq T3 Tx Tr Ts Tu Tv T4 Tw Ty Tz]

 ✅ ❌ ✅ 🗑 🗑 ✅ ❌ 🗑 🗑 🗑 🗑 ✅ ❌ 🗑
🗑
[T1 To T2 Tp’ Tq’ T3 Tx Tr’ Ts’ Tu’ Tv’ T4 Tw Ty’ Tz’]

repeat

Speculative Decoding 101: Model-Free Speculation

prompt

T1 → T2 → Tx → Ty LLM

✅ ✅ ❌ 🗑
T1 T2 Tx T3 Ty’

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

🚀 SuffixDecoding: Up to 5.3x end-to-end speedup

5 8

2 5 9

9 1 2 4

3 6

1 3 7Previous
Outputs Suffix Tree Cache

Index
Aggressive
Speculation

Fast LLM Agents

SuffixDecoding: A Tale of Two Trees 🌲🌳

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs

Request Tree

4

8

5

Global Tree

SuffixDecoding: A Tale of Two Trees 🌲🌳

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs

Request Tree

4

8

5

Global Tree

SuffixDecoding: A Tale of Two Trees 🌲🌳

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs

Request Tree

4

8

5

1 2

1 3

3 6

Speculation Tree
Candidates

Expansion

4

8

5

4

8

Global Tree

SuffixDecoding: A Tale of Two Trees 🌲🌳

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs

Request Tree

4

8

5

1 2

1 3

3 6

Speculation Tree
Candidates

Expansion 1 2

1 3

Scoring

Speculation Tree

4

8

5

4

8

Global Tree

SuffixDecoding: A Tale of Two Trees 🌲🌳

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs

Request Tree

4

8

5

1 2

1 3

3 6

Speculation Tree
Candidates

Expansion 1 2

1 3

Scoring

Verification &
Generation

Verify (LLM)

1 2

1

8 5 4 8 5 3

Speculation Tree

3

1

4

8

5

4

8

Global Tree

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

Efficient Verification via Adaptive Speculation

● Static speculation not viable because verification cost is substantial
● Adaptive speculation based on pattern match quality
● Formula: MAX_SPEC = αp (where p = pattern match length)

Blazingly Fast and Memory Efficient Speculation

Robustness: SuffixDecoding + EAGLE-3 Hybrid

Robustness: SuffixDecoding + EAGLE-3 Hybrid
Start: Lookup Pattern

Calculate
Speculation Score

Use SuffixDecoding Fall back to EAGLE-3

End: Generate Output

Score > Threshold?

Yes (Strong Patterns) No (Weak/No Patterns)

Robustness: SuffixDecoding + EAGLE-3 Hybrid

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ End-to-End Speedups
○ Live vLLM Integration

6. Deeper Dives & Ablations
7. Conclusion

End–To-End Evaluation Benchmarks

AgenticSQL OpenHands CodeAct +
SWE-Bench Verified

SpecBench

Agentic Open-ended

Up to 5.3x end-to-end speedup

Up to 5.3x end-to-end speedup

Up to 5.3x end-to-end speedup

Up to 5.3x end-to-end speedup

Up to 5.3x end-to-end speedup

Up to 4.5x SWE-Bench Verified Task Completion Speedup

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ Micro-Benchmarks
○ End-to-End Speedups

6. Deeper Dives & Ablations
7. Conclusion

Why Two Trees?

We ran an ablation to see what each suffix tree
contributes.

● Per-request Tree Only: Decent speedup,
but low.

● Global Tree Only: The long-term history
provides most of the speedup.

● Both Trees: In almost every case, using
both trees is the best.

How do we know if SuffixDecoding will work?

● Measure the empirical entropy (i.e. the
"structuredness") of a workload with just 100
example outputs.

● Lower average entropy indicates more
predictable outputs and better SuffixDecoding
performance.

○ AgenticSQL Enrich: 0.171 entropy → 10.41×
speedup

○ SpiderSQL: 2.50 entropy → 2.19× speedup

○ WildChat (open-ended chat): 3.43 entropy →
modest speedup

What happens when the input distribution shifts?

🔎 Experiment:

1. Train Cache on WildChat
(open-ended chat).

2. Shift Workload: Run inference on
SpiderSQL

3. Adapt: We let SuffixDecoding add the
new SpiderSQL outputs to the tree

📊 Results:

★ At 0 new examples, speedup is low (~1.5x) but still better than vanilla.
★ SuffixDecoding adapts fast. After 500 examples, already matching perfect cache

👉 Takeaway: The system is robust to distribution shift and adapts online automatically.

Agenda

1. The Problem: Latency in Modern AI Workloads
2. Background: Speculative Decoding 101
3. Our Solution: SuffixDecoding
4. Key Features: Adaptive, Fast, and Hybrid
5. Evaluation & Results

○ Micro-Benchmarks
○ End-to-End Speedups

6. Deeper Dives & Ablations
7. Conclusion

Conclusion

✓ SuffixDecoding achieves 5.3x end-to-end
speedup for agentic workloads.

✓ Requires no model training.

✓ Maintains lossless output quality.

✓ Can be hybridized with other speculation
methods (e.g. EAGLE-3) for rapid open-ended
generation.

✓ Available in

Project Page

Questions? Contact: goliaro@cs.cmu.edu

https://suffix-decoding.github.io/
mailto:goliaro@cs.cmu.edu

