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1. The Problem: Latency in Modern Al Workloads



Challenge: Emerging Al Workloads Suffer from High Latency

\"4 Inference-Time Scaling techniques can improve the output quality
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Self-Consistency

= But better accuracy comes at the cost of more generated tokens



Opportunity: Token Repetitions in Emerging Al Workloads

* Self-reflection loops

v Repeated code/text with minor edits
% Multiple reasoning paths

v Similar reasoning patterns
% Multi-agent workflows
*

elconfig_values)]

v Shared context across agents
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lterative refinement two lines

v/ 100+ lines repeated, 2 modified f@j
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2. Background: Speculative Decoding 101



Speculative Decoding 101: Vanilla Decoding
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Speculative Decoding 101: Sequence-Based Speculation
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Speculative Decoding 101: Tree-Based Speculation
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Speculative Decoding 101: Model-Free Speculation
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3. Our Solution: SuffixDecoding



4’ SuffixDecoding: Up to 5.3x end-to-end speedup
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SuffixDecoding: A Tale of Two Trees #& @
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SuffixDecoding: A Tale of Two Trees #& @
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SuffixDecoding: A Tale of Two Trees #& @
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SuffixDecoding: A Tale of Two Trees #& @
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SuffixDecoding: A Tale of Two Trees #& @
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4. Key Features: Adaptive, Fast, and Hybrid



Efficient Verification via Adaptive Speculation

e Static speculation not viable because verification cost is substantial

e Adaptive speculation based on pattern match quality

e Formula: MAX_SPEC = ap (where p = pattern match length)
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Blazingly Fast and Memory Efficient Speculation

Memory Footprint (MB)

(a) Memory Scalability
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Robustness: SuffixDecoding + EAGLE-3 Hybrid

Mean Accepted Tokens per Step

Speculation Methods
B EAGLE-3
mm Suffix

Mean Accepted Tokens
(tokens/step)

Agentic workload Open ended workload
(AgenticSQL) (SpecBench)



Robustness: SuffixDecoding + EAGLE-3 Hybrid

Start: Lookup Pattern

l

Calculate
Speculation Score
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}
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End: Generate Output —‘



Robustness: SuffixDecoding + EAGLE-3 Hybrid
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5. Evaluation & Results
o End-to-End Speedups
o Live VLLM Integration



End—-To-End Evaluation Benchmarks
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Up to 5.3x end-to-end speedup
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Speculative Speedups over Vanilla Decoding

Speculation Methods

i msm Vanilla
x4
[N
2 B¢
(0]
e
w2
1.0x 1.0x 1.0x
1 I = [
0 = T T T
AgenticSQL SWE-Bench SpecBench
Benchmarks
Mean Accepted Tokens per Step
8 4 Speculation Methods
mmw Vanilla

3 61
(O]
7
a
g4
v
S

2 -

1.0 1.0 1.0
. | ] , [ ] ,
AgenticSQL SWE-Bench SpecBench

Benchmarks




Up to 5.3x end-to-end speedup
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Up to 5.3x end-to-end speedup
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Up to 5.3x end-to-end speedup
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Up to 5.3x end-to-end speedup

Speculative Speedups over Vanilla Decoding
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Up to 4.5x SWE-Bench Verified Task Completion Speedup

Solving SWE-Bench Verified: 1.8x - 4.5x Faster with Suffix Decoding
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6. Deeper Dives & Ablations



Why Two Trees?

15 G i ;
I Both Trees (Baseline)

We ran an ablation to see what each suffix tree 8
] o I Global Tree Only
contributes. L; 10 B Per-request Tree Only -
! \
e Per-request Tree Only: Decent speedup, & 5
but low. 2 . ‘ t .
<
e Global Tree Only: The long-term history 20'
7 25
provides most of the speedup. §
< 20
e Both Trees: In almost every case, using % 15
both trees is the best. g 0.
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How do we know if SuffixDecoding will work?

e Measure the empirical entropy (i.e. the

"structuredness") of a workload with just 100 Daloset Sivetage- Entrony

AgenticSQL (Enrich) 0.171

example outputs. AgenticSQL (Classify) 0.738

e Lower average entropy indicates more AgenticSQL (Extract) 0.0862
_ . _ AgenticSQL (SQL1) 1.52
predictable outputs and better SuffixDecoding AgenticSQL (SQL2) 1.49
performance. AgenticSQL (SQL3) 1.51
AgenticSQL (Combine) 1.49

o AgenticSQL Enrich: 0.171 entropy — 10.41x Spider 2.50
speedup WildChat 343
Magicoder 2.95

o SpiderSQL: 2.50 entropy — 2.19x speedup

o WildChat (open-ended chat): 3.43 entropy —
modest speedup



What happens when the input distribution shifts?

/- Experiment: | i R T e T =

1. Train Cache on WildChat
(open-ended chat).
2. Shift Workload: Run inference on
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SpiderSQL 0 100 200 | 300 400 500
3. Adapt: We let SuffixDecoding add the Number of SpiderSQL Examples
new SpiderSQL outputs to the tree

./ Results:

% At 0 new examples, speedup is low (~1.5x) but still better than vanilla.
* SuffixDecoding adapts fast. After 500 examples, already matching perfect cache

<~ Takeaway: The system is robust to distribution shift and adapts online automatically.
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6.
7. Conclusion



Conclusion

v SuffixDecoding achieves 5.3x end-to-end

speedup for agentic workloads. ﬁ Project Page

v Requires no model training.

Maintains lossless output quality.

Can be hybridized with other speculation
methods (e.g. EAGLE-3) for rapid open-ended
generation.

v/ Available in vLLM

Questions? Contact: goliaro@cs.cmu.edu



https://suffix-decoding.github.io/
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