AVYe

SuffixDecoding: Extreme Speculative
Decoding for Emerging Al Applications

Gabriele Oliaro, Zhihao Jia, Daniel Campos, Aurick Qiao

NeurlPS 2025 (Spotlight)

o',g snowfloke” (VI i catalyst

Agenda

ok wbd -~

&

The Problem: Latency in Modern Al Workloads
Background: Speculative Decoding 101
Our Solution: SuffixDecoding
Key Features: Adaptive, Fast, and Hybrid
Evaluation & Results
o End-to-End Speedups
o Live VLLM Integration
Deeper Dives & Ablations
Conclusion

Agenda

1. The Problem: Latency in Modern Al Workloads

Challenge: Emerging Al Workloads Suffer from High Latency

\"4 Inference-Time Scaling techniques can improve the output quality

Test Speedup
<SGL Q. nput - a)
#include <cuda_runtime.h> ° N Profiling =
_global__ void silu(...) e Agent
{ e Test Result 0 0) ,@‘
hreadIdx.x; a aa
= blockDim.x; Testing ° Planning

int 1= bx * bd + tx; Agent
Code

@ e
{750
o
Coding
Agent

Suggestions

Multi-Agent Pipelines

N

)

Feedback Refine

Model M

Use M to get feedback on its own output Use M to refine its previous output, given its feedback

lterative Refinement

Greedy decode
B This means she uses 3 + 4 = 7 eggs every day.
Chain-of-thought Language | | She sells the remainder for $2 per egg, soin
it el - L
The answer is $14.
Self-consistency ﬂ Sample adiverse setof s, Marginalize out reasoning paths
reasoning paths to aggregate final answers
1

(" : f there are 3 cars in the parking Shehas 16 -3- 4 =9 eggs \

lot and 2 more cars arrive, how many left. So she makes $2* 9= | The answer is $18.

cars are in the parking lot? $18 per day. 1 \

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
+2=5 cars. The answer is 5.

t
This means she she sells the \
remainder for $2* (16 - 4 - 3) The answer is $26.
=$26 per day. 1

Language |

model

Q: Janet's ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
with four. She sell
the remainder for $2 per egg. How
much does she make every day?

\J

)

She eats 3 for breakfast, so |
she has 16 - 3= 13 left. Then | /
she bakes muffins, soshe | The answer is $18.
has 13- 4 = 9 eggs left. So
she has 9 eggs * $2=$18. |

Self-Consistency

= But better accuracy comes at the cost of more generated tokens

Opportunity: Token Repetitions in Emerging Al Workloads

* Self-reflection loops

v Repeated code/text with minor edits
% Multiple reasoning paths

v Similar reasoning patterns
% Multi-agent workflows
*

elconfig_values)]

v Shared context across agents

. . Change
lterative refinement two lines

v/ 100+ lines repeated, 2 modified f@j

gggggggggggggggggg

ax

Agenda

2. Background: Speculative Decoding 101

Speculative Decoding 101: Vanilla Decoding

prompt

|

repeat { LLM J

TM—->T2->T3—->T4

Speculative Decoding 101: Sequence-Based Speculation

prompt

]
repeat | | Draft model }— TM->T2->Tx—>Ty LLM

|

% @ X

T1 T2 T3 Ty

Speculative Decoding 101: Tree-Based Speculation

rompt
P P Causal Mask +
—1\ [T1 To T2 Tp Tq T3 Tx Tr Ts Tu Tv T4 Tw Ty TZ]
repeat [Draft model } l

LLM

i
MXMET EMXET TE TMXE

[T1 To T2 Tp’ Tq' T3 Tx Tr' Ts" Tu’ Tv' T4 Tw Ty’ TZ]]

Tr

@

To

<T"<

Tq

Speculative Decoding 101: Model-Free Speculation

prompt

- Q]—T1—>T2—>Tx—>Ty—{ LM }

X 5
T1 T2 T3 Ty

Agenda

3. Our Solution: SuffixDecoding

4’ SuffixDecoding: Up to 5.3x end-to-end speedup

Q) .
Aggressive
Index & Speculation

(8)

®©® 060 O ::>
:) @\g ‘
Previous ® e

Outputs Suffix Tree Cache Fast LLM Agents

|

SuffixDecoding: A Tale of Two Trees #& @

Request Tree

Ongoing
Inference

81548

Previous
Outputs Global Tree

SuffixDecoding: A Tale of Two Trees #& @

Request Tree
: O
Ongoing
Inference ® ® ®
® @ ®
815/4(8|5 G ® @
® ®
®
Previous

Outputs Global Tree

SuffixDecoding: A Tale of Two Trees #& @

Request Tree
Ongoing / \
Inference
o O
8[5/4|8 & ® @
:
Expansi£> @
O
ONO©)
ONO)

Speculation Tree
Global Tree K Candidates /

SuffixDecoding: A Tale of Two Trees #& @

Request Tree
Ongoing / \
Inference
o O
8548
e ¢
®
O ¢ O
®
Expansion ® IEoring ®» @
o offe
ON©,
ONO) Speculation Tree
Speculation Tree

Global Tree K Candidates /

SuffixDecoding: A Tale of Two Trees #& @

Request Tree

Ongoing
Inference

815

4

8

Global Tree

2]

ONO,

Speculation Tree

K Candidates /

ONO,

Speculation Tree

O

oring) 1 @ | Verify (LLM) »

4 N

O

® @
ONO,

[8]5]4]8]s]t]3]

Verification &

K Generation /

Agenda

4. Key Features: Adaptive, Fast, and Hybrid

Efficient Verification via Adaptive Speculation

e Static speculation not viable because verification cost is substantial

e Adaptive speculation based on pattern match quality

e Formula: MAX_SPEC = ap (where p = pattern match length)

Mean Accepted Tokens

—_
o
1

o
1

(@)}
1

S
1

N
1

5 10
Pattern Match Length

15

Speedup Factor

1.8

1o?

1.6 1

1.5 -

a=16.0 _@— Constant

=510 —®— Adaptive

a=4.0

<2

1.4

0.0

0.1 0.2 0.3
Acceptance Rate

Blazingly Fast and Memory Efficient Speculation

Memory Footprint (MB)

(a) Memory Scalability

== = Linear fit O(n)
[Measured

1 5 10 15
Number of Entries (thousands)

20

Time per Token (Us)

(b) Update and Lookup Performance

14 =@= Update time

=fl= Lookup time

1219 .\./F O O
10 1
8 -
6 -

4 @—— @ @ L
2 -

O 1 1 1 | | T
1) 10 15 20

Number of Entries (thousands)

Robustness: SuffixDecoding + EAGLE-3 Hybrid

Mean Accepted Tokens per Step

Speculation Methods
B EAGLE-3
mm Suffix

Mean Accepted Tokens
(tokens/step)

Agentic workload Open ended workload
(AgenticSQL) (SpecBench)

Robustness: SuffixDecoding + EAGLE-3 Hybrid

Start: Lookup Pattern

l

Calculate
Speculation Score

|

Score > Threshold?

/ \

Yes (Strong Patterns) No (Weak/No Patterns)
}
Use SuffixDecoding Fall back to EAGLE-3

End: Generate Output —‘

Robustness: SuffixDecoding + EAGLE-3 Hybrid

Mean Accepted Tokens per Step

Speculation Methods
mmm EAGLE-3

e Suffix

mmm Suffix (hybrid)

w ()} ~
I 1 1

FSN
1

Mean Accepted Tokens
(tokens/step)

Agentic workload Open ended workload
(AgenticSQL) (SpecBench)

Agenda

5. Evaluation & Results
o End-to-End Speedups
o Live VLLM Integration

End—-To-End Evaluation Benchmarks

AgenticSQL

OpenHands CodeAct +
SWE-Bench Verified

SpecBench

Semantic ~ User
Model Question

Structured Unstructured
Generation Generation
D Retrieval-Augmented Generation (RAG)

Enrich

Question
Interpretation

[Combine
+ SQL Query

valid SQL SQLN
Queries Database

Error £
Correction

CodeAct

unified action space

N2

Environment
Sofowareetoce (AP
Interface for Computer
g Information Seeking

(e, Websearch, Browsing)

Soft

kage (Tool)

x mioad, Visualize)
=\ External Memory
(et D, Gy
B
Interface for Physical World

Robots
(8, Houschold Robots, Automated Lab)
u}

Outcome
E.g., Execution results,
Automated error feedback

Z Conversation
@ Action in Natural Language
@ Think
N
@ Planning
“hain-of-thought

=) Agent

oving Action from
ior Observation

(@ Observation

= User ¢—start

If-Reflection

Initiate Interaction

Conversation
E.g, Natural Language
Instruction or Feedback

Agentic

Translation

Multi-turn

Summarization Conversation

ll6/18 2 2224

Question Retrieval-
Answering augmented
Generation
Mathematical
Reasoning
EAGLE Sps Medusa
PLD REST Lookahead

_ /

~
Open-ended

Up to 5.3x end-to-end speedup

Mean Accepted Tokens

Speculative Speedups over Vanilla Decoding

Speculation Methods

i msm Vanilla
x4
[N
2 B¢
(0]
e
w2
1.0x 1.0x 1.0x
1 I = [
0 = T T T
AgenticSQL SWE-Bench SpecBench
Benchmarks
Mean Accepted Tokens per Step
8 4 Speculation Methods
mmw Vanilla

3 61
(O]
7
a
g4
v
S

2 -

1.0 1.0 1.0
. |] , [] ,
AgenticSQL SWE-Bench SpecBench

Benchmarks

Up to 5.3x end-to-end speedup

Mean Accepted Tokens

Speculative Speedups over Vanilla Decoding

Speculation Methods

54 e Vanilla mmm EAGLE-{1,2,3}
x4
[N
2 B¢
(0]
e
w27

1.0x
1 -
: | M. |
AgenticSQL SWE-Bench SpecBench
Benchmarks
Mean Accepted Tokens per Step
8 - Speculation Methods
e Vanilla B EAGLE-{1,2,3}

3 61
[}
k7
a
< 4+ 3.6
4
S

2 -

1.0 1.0
o , Y , |
AgenticSQL SWE-Bench SpecBench

Benchmarks

Up to 5.3x end-to-end speedup

Mean Accepted Tokens

Speculative Speedups over Vanilla Decoding

Speculation Methods

mmm Vanilla mmm EAGLE-{1,2,3} mmm Model-free

AgenticSQL

2.4x 2.2x
1.5x
1.0x
M .
SWE-Bench SpecBench
Benchmarks

Mean Accepted Tokens per Step

£ ()] ©
1 1 1

(tokens/step)

N
1

o
I

Speculation Methods

mm Vanilla mmm EAGLE-{1,2,3} mmm Model-free

3.2

1.0

B

AgenticSQL

SWE-Bench SpecBench
Benchmarks

Up to 5.3x end-to-end speedup

Mean Accepted Tokens

Speculative Speedups over Vanilla Decoding

AgenticSQL

Speculation Methods
mmm Vanilla msm Model-free mmm Suffix
mm EAGLE-{1,2,3}

2.5x 2.4x

2.2x

SWE-Bench SpecBench
Benchmarks

Mean Accepted Tokens per Step

£ ()] ©
1 1 1

(tokens/step)

N
1

o
I

AgenticSQL

7.8 Speculation Methods
s Vanilla mmm Model-free . Suffix
= EAGLE-{1,2,3}

SWE-Bench SpecBench
Benchmarks

Up to 5.3x end-to-end speedup

Speculative Speedups over Vanilla Decoding

5.3x Speculation Methods
e Vanilla mmm Model-free mmm Suffix (hybrid)
s EAGLE-{1,2,3} M Suffix

2.5x 2.5x
2.4x 2.2x

AgenticSQL SWE-Bench SpecBench
Benchmarks

Mean Accepted Tokens per Step

7.8 Speculation Methods
mmm Vanilla msm Model-free mmm Suffix (hybrid)
mmm EAGLE-{1,2,3} mmm Suffix

[ee]
1

(<))
1

4.6

Mean Accepted Tokens
(tokens/step)
S

AgenticSQL SWE-Bench SpecBench
Benchmarks

Up to 4.5x SWE-Bench Verified Task Completion Speedup

Solving SWE-Bench Verified: 1.8x - 4.5x Faster with Suffix Decoding

0.9x
200

—
W
(=]

1.9x
100

Solving Time per Instance (s)

wn
(=}

Repository

Legend
[Vvanilla Decoding Time = Prompt Lookup Decoding Time BB Suffix Decoding Time (Ours)
[Vvanilla Queuing & Prefilling Time [Prompt Lookup Queuing & Prefilling Time [Suffix Queuing & Prefilling Time (Ours)
[Vanilla Action Time [Prompt Lookup Action Time [Suffix Action Time (Ours)

Agenda

6. Deeper Dives & Ablations

Why Two Trees?

15 G i ;
I Both Trees (Baseline)

We ran an ablation to see what each suffix tree 8
] o I Global Tree Only
contributes. L; 10 B Per-request Tree Only -
! \
e Per-request Tree Only: Decent speedup, & 5
but low. 2 . ‘ t .
<
e Global Tree Only: The long-term history 20'
7 25
provides most of the speedup. §
< 20
e Both Trees: In almost every case, using % 15
both trees is the best. g 0.
3
7
z

Classify
Combine
Enrich
Extract
SQL 1
SQL 2
SQL 3

AgenticSQL Task

How do we know if SuffixDecoding will work?

e Measure the empirical entropy (i.e. the

"structuredness") of a workload with just 100 Daloset Sivetage- Entrony

AgenticSQL (Enrich) 0.171

example outputs. AgenticSQL (Classify) 0.738

e Lower average entropy indicates more AgenticSQL (Extract) 0.0862
_ . _ AgenticSQL (SQL1) 1.52
predictable outputs and better SuffixDecoding AgenticSQL (SQL2) 1.49
performance. AgenticSQL (SQL3) 1.51
AgenticSQL (Combine) 1.49

o AgenticSQL Enrich: 0.171 entropy — 10.41x Spider 2.50
speedup WildChat 343
Magicoder 2.95

o SpiderSQL: 2.50 entropy — 2.19x speedup

o WildChat (open-ended chat): 3.43 entropy —
modest speedup

What happens when the input distribution shifts?

/- Experiment: | i R T e T =

1. Train Cache on WildChat
(open-ended chat).
2. Shift Workload: Run inference on

L
w

—8— WildChat — SpiderSQL
—== SpiderSQL Baseline

Speedup Factor
— N
3)

—
(e]

SpiderSQL 0 100 200 | 300 400 500
3. Adapt: We let SuffixDecoding add the Number of SpiderSQL Examples
new SpiderSQL outputs to the tree

./ Results:

% At 0 new examples, speedup is low (~1.5x) but still better than vanilla.
* SuffixDecoding adapts fast. After 500 examples, already matching perfect cache

<~ Takeaway: The system is robust to distribution shift and adapts online automatically.

Agenda

6.
7. Conclusion

Conclusion

v SuffixDecoding achieves 5.3x end-to-end

speedup for agentic workloads. ﬁ Project Page

v Requires no model training.

Maintains lossless output quality.

Can be hybridized with other speculation
methods (e.g. EAGLE-3) for rapid open-ended
generation.

v/ Available in vLLM

Questions? Contact: goliaro@cs.cmu.edu

https://suffix-decoding.github.io/
mailto:goliaro@cs.cmu.edu

