
A*-Thought: Efficient Reasoning via Bidirectional Compression for Low-Resource Settings

Xiaoang Xu¹, Shuo Wang²*, Xu Han^{2,4,5}, Zhenghao Liu³, Huijia Wu¹, Peipei Li¹, Zhiyuan Liu^{2,4,5}, Maosong Sun^{2,4,5}, Zhaofeng He¹*

¹BUPT ²Dept. of Comp. Sci. & Tech., Tsinghua University ³ Northeastern University ⁵ Beijing National Research Center for Information Science and Technology

Path-Level A* Search for Compressing CoT-

(1) Initialization

Given the thought sequeue $\mathcal Q$ sorted by BIS, the first step is dequeued from $\mathcal Q$ to form thinking span $\mathbf{r}^{(n)} = \langle \mathbf{t}^{(n-1)}, \mathbf{t}^{(n)}, \mathbf{t}^{(n+1)} \rangle$ as the root node of the search tree $\mathcal T$.

(2) Verification

A validation model $\mathcal V$ is introduced to determine whether the $[\cdot]$ current thinking step: $\mathbf t_k'$ current thought path \mathbf{t}_k' successfully leads to the solution \mathbf{S} :

 $\mathcal{V}\left(\mathbf{q}+\mathbf{t}_{k}^{\prime}
ight)egin{cases}
eq \mathbf{s}, & ext{expand } \mathcal{T} \ = \mathbf{s}, & ext{return } \mathbf{t}^{\prime}=\mathbf{t}_{k}^{\prime} \end{cases}$

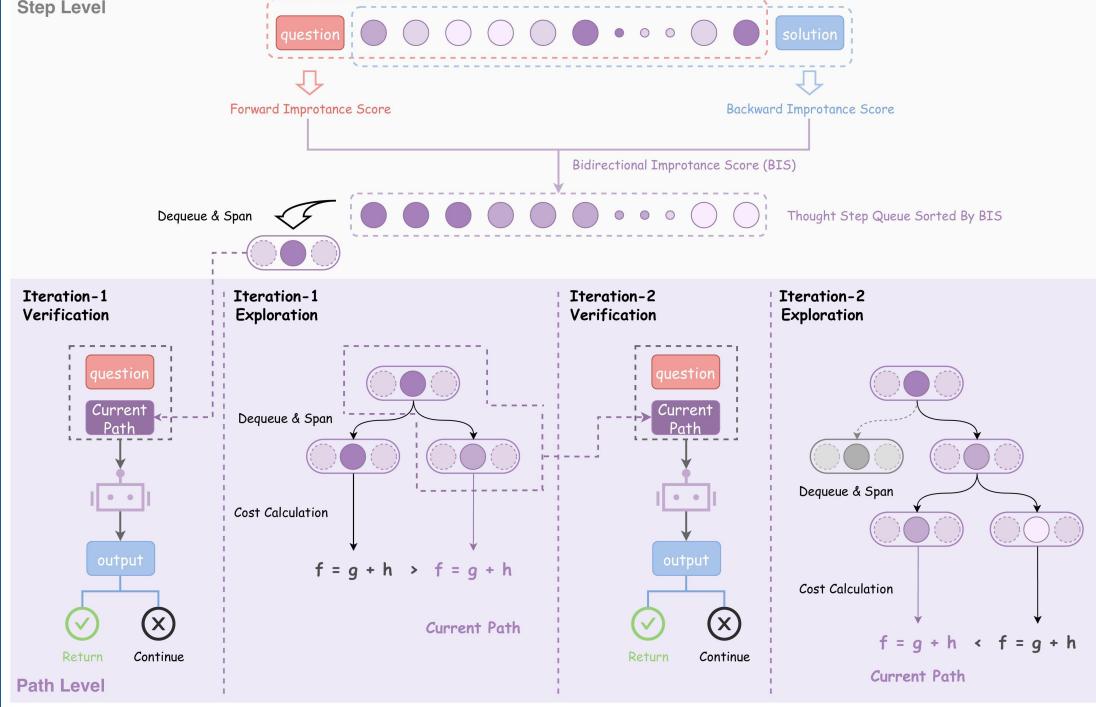
(3) Exploration If \mathbf{t}_k' doesn't pass verification, each node in the first W spans $\{\mathbf{r}_1,\ldots,\mathbf{r}_W\}$ that dequeued from $\mathcal Q$ is appended to $\mathbf t_k'$, then select the node that with the minimal cost function $f(\cdot)$ in candidate thinking paths:

$$\hat{\mathbf{r}}_w = \underset{w \in \{1, \dots, W\}}{\operatorname{argmin}} f(\mathbf{t}'_k + \mathbf{r}_w)$$

Current Cost Function G $g(\mathbf{t}'_k) = -\frac{\beta}{|\mathbf{t}'_k|} \log P_{\mathcal{V}}(\mathbf{t}'_k|\mathbf{q})$

Future Cost Function H $h(\mathbf{t}'_k) = \mathcal{I}(\mathbf{s}|\mathbf{q}, \mathbf{t}'_k)$

• question: **q**


 $\mathbf{r}^{(n)} = \langle \mathbf{t}^{(n-1)}, \mathbf{t}^{(n)}, \mathbf{t}^{(n+1)} \rangle$

Cost Function F = G + H

$$f(\mathbf{t}'_k + \mathbf{r}_w) = g(\mathbf{t}'_k + \mathbf{r}_w) + h(\mathbf{t}'_k + \mathbf{r}_w)$$

A*-Thought Framework

1. How to identify high-quality and informative steps at the step-level? We design a step-level bidirectional importance score (BIS) to evaluate the criticality of individual sentences. This scoring mechanism serves to significantly enhance effectiveness of the A* search procedure compared to standard sampling.

2. How to effectively assemble individual thinking steps into a concise and effective reasoning path at the path-level?

We introduce a *path-level A* search algorithm* tailored for compressing lengthy CoTs from LRMs. It strategically considers both current path quality and estimated future costs to optimize LRM performance under stringent output length constraints.

- Efficiency 🗎 & Performance 💂

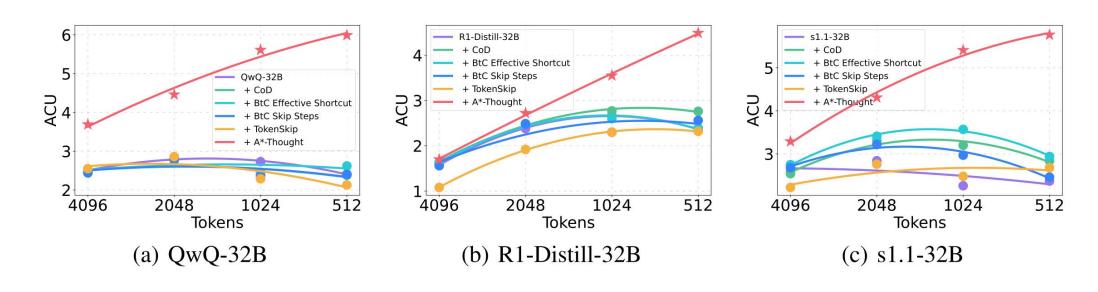


Figure 4: ACU on different methods, which reflects performance-to-efficiency ratio of LRMs.

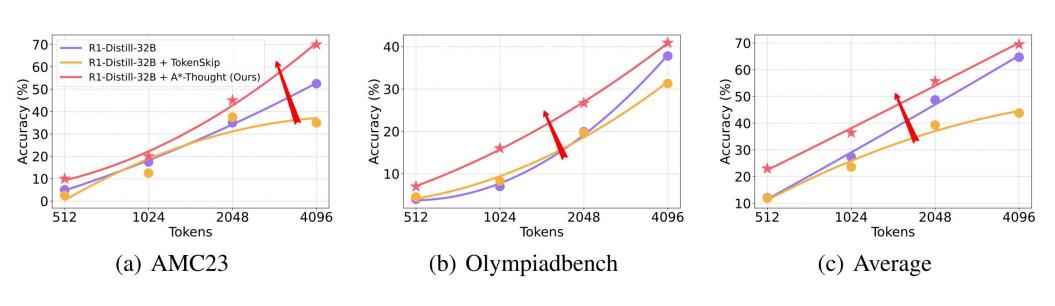


Figure 5: Performance of R1-Distill-32B augmented using TokenSkip and A*-Thought. "Average" denotes the average accuracy of the model in MATH500, AMC23, OlympiadBench, and GSM8K.

-Results

Table 1: Experimental results of different long-to-short methods across several benchmarks. The best results are shown in **bold**, and the second-best results are <u>underlined</u>.

Methods	MATH500		AMC23		OlympiadBench		GSM8K		Average		ACU
	Acc.(†)	Len.(\lambda)	Acc.(†)	Len.(\(\psi\))	Acc.(†)	Len.(\psi)	Acc.(†)	Len.(\lambda)	Acc.(\u00a3)	Len.(\lambda)	1100
Budget: 512 Tokens											
QwQ-32B	10.8	512.00	2.5	512.00	3.3	512.00	27.6	511.97	11.1	511.99	2.16
QwQ-32B w/ s1K-1.1	9.6	512.00	7.5	512.00	3.4	512.00	28.8	512.00	12.3	512.00	2.41
+ CoD	10.6	512.00	5.0	512.00	4.2	512.00	29.0	511.96	12.2	511.99	2.38
+ BtC Effective Shortcut	10.2	512.00	12.5	512.00	4.2	512.00	26.7	511.95	<u>13.4</u>	511.99	2.6
+ BtC Skip Steps	9.6	512.00	5.0	512.00	5.6	512.00	28.9	511.95	12.3	511.99	2.4
+ TokenSkip	10.8	511.05	2.5	512.00	3.9	512.00	26.4	508.11	10.9	510.79	2.1
+ A*-Thought	33.2	491.92	15.0	508.60	12.0	509.74	57.4	451.76	29.4	490.51	5.9
			В	udget: 102	4 Tokens						
QwQ-32B	16.6	1016.85	15.0	1024.00	6.4	1023.93	49.1	951.96	21.8	1004.19	2.1
QwQ-32B w/ s1K-1.1	24.8	1023.52	17.5	1024.00	8.9	1023.94	60.1	999.80	27.8	1017.82	2.7
+ CoD	24.8	1023.37	5.0	1024.00	$\overline{7.3}$	1023.64	60.1	996.84	24.3	1016.96	$\overline{2.3}$
+ BtC Effective Shortcut	23.4	1022.88	7.5	1024.00	7.7	1023.92	61.3	1000.44	25.0	1017.81	2.4
+ BtC Skip Steps	23.4	1023.25	5.0	1024.00	7.6	1024.00	59.9	1000.93	24.0	1018.05	2.3
+ TokenSkip	22.4	995.96	12.5	1024.00	6.4	1019.61	49.7	934.74	22.8	993.58	2.2
+ A*-Thought	50.8	858.28	37.5	928.25	22.3	954.74	81.9	688.69	48.1	857.49	5.6
			В	udget: 204	8 Tokens						
QwQ-32B	51.2	1844.96	25.0	1978.60	18.4	2021.95	80.4	1245.68	43.8	1772.80	2.4
QwQ-32B w/ s1K-1.1	60.0	1887.15	35.0	2000.95	23.3	2012.14	88.7	1474.00	51.8	1843.56	2.8
+ CoD	60.2	1894.54	30.0	2022.35	25.5	2018.02	89.5	1490.23	51.3	1856.29	2.7
+ BtC Effective Shortcut	60.8	1884.67	35.0	2004.65	23.7	2012.43	89.8	1473.25	52.3	1843.75	2.8
+ BtC Skip Steps	58.8	1884.96	35.0	2005.67	23.2	2013.05	$\overline{89.2}$	1490.39	51.6	1848.52	2.7
+ TokenSkip	53.6	1685.34	35.0	1923.25	19.7	1943.68	86.7	1272.03	48.8	1706.08	2.8
+ A*-Thought	69.2	1271.76	45.0	1540.30	30.3	1625.89	91.2	843.69	58.9	1320.41	4.4
			В	udget: 409	6 Tokens						
QwQ-32B	75.4	2798.67	55.0	3456.05	36.5	3645.22	85.8	1348.24	63.2	2812.05	2.2
QwQ-32B w/ s1K-1.1	79.6	2693.27	65.0	3485.95	42.4	3500.66	95.2	1624.11	70.6	2826.00	2.5
+ CoD	80.2	2719.00	60.0	3354.28	42.0	3488.67	95.0	1655.80	69.3	2804.44	2.4
+ BtC Effective Shortcut	79.6	2696.72	57.5	3355.43	42.4	3493.28	94.8	1636.45	68.6	2795.47	2.4
+ BtC Skip Steps	80.2	2710.83	57.5	3399.93	41.8	3494.41	94.9	1651.37	68.6	2814.14	2.4
+ TokenSkip	74.4	2336.29	52.5	3156.68	37.8	3289.44	94.8	1412.87	64.9	2548.82	2.5
+ A*-Thought	78.8	1699.78	65.0	2385.85	40.1	2546.45	93.1	874.54	69.3	1876.66	3.6

—Analysis·

Table 4: Amount of the training data and the corresponding time. ρ denotes the compression rate.

Training Set	ρ	Training Time (s)					
	P	QwQ-32B	R1-Distill-32B	s1.1-32B			
s1K-1.1	100.00%	13819.60	13784.32	13638.07			
+ TokenSkip	85.41% (\14.59%)	$12846.14 (\downarrow 7.04\%)$	12700.96 (\psi.86%)	12679.52 (\pm, 7.03\%)			
+ A*-Thought	31.31% (\(\dagger 68.69\%)	10468.20 (\\24.25\%)	10809.50 (\\21.58\%)	10550.03 (\\22.64\%)			

Mikka wants to order a pizza with two toppings. He has 8 different toppings to choose from. How many different pizzas could he order?

Okay, so Mikka wants to order a pizza with two different toppings, and there are 8 different toppings available. I need to figure out how many different First, when the problem says "two different toppings," that means Mikka is choosing two distinct toppings from the 8 available. The question is asking about the number of different combinations possible. Since the order of the toppings on the pizza doesn't matter—like, a pizza with pepperoni and mush-So, the formula for combinations is $C(n,k) = \frac{n!}{k! \cdot (n-k)!}$, where n is the total number of items, and k is the number of items you're choosing. In

then it would be a permutation. But since the pizza is just a circle, and toppings are spread around, the order isn't important. So, yeah, combinations are Alternatively, I can think of it as Mikka choosing the first topping and then the second topping. For the first topping, he has 8 choices, and then for the second topping, he has 7 choices left. So, $8 \times 7 = 56$. But wait, this counts each pair twice because choosing topping A first and then topping

Wait, just to be thorough, let's consider an example with fewer toppings. Suppose there were only 3 toppings: A, B, and C. How many different vo-topping pizzas could he make? Let's list them: AB, AC, BC. That's 3. According to the formula, $C(3,2) = \frac{3!}{2!} = \frac{6}{2} = 3$. Correct. So that works. If we tried the other method, $\frac{3\times 2}{2}=3$. Also correct. So the formula works here. Therefore, returning to the original problem, with 8 toppings, the number of two-topping combinations is 28. So Mikka has 28 different pizza option

 $C(8,2) = \frac{8!}{2! \cdot (8-2)!} = \frac{8 \times 7}{2 \times 1} = 28.$ Therefore, Mikka can order 28 different pizzas. **Final Answer** The number of different pizzas Mikka could order is 28. Mikka wants to order a pizza with two different toppings from 8 available toppings. This is a combination problem, the formula for combina

where n = 8 (the total number of toppings) and k = 2 (the number of toppings to choose) Plugging in the values, we get:

 $C(8,2) = \frac{8!}{2! \cdot 6!} = \frac{8 \times 7 \times 6!}{2 \times 1 \times 6!} = 28$ Thus, the number of different pizzas Mikka could order is 28.

Thus, the number of different pizzas Mikka could order is 28.

Figure 7: Responses generated by QwQ-32B models trained with and without A*-Thought. Red box represents the question, purple box represents the thinking process, blue box represents the solution.

