

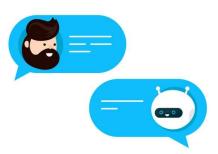
Feedback-Aware MCTS for Goal-Oriented Information Seeking

Harshita Chopra & Chirag Shah

{hchopra3, chirags}@cs.washington.edu

Background

- User often start the conversation with partial or vague information.
 - > "My laptop won't start. What's wrong?"
- Effective problem-solving requires identifying and acquiring missing information.
- Goal-oriented dialogue systems must ask the right questions to reach the answer efficiently.
- Poor questioning leads to long, unhelpful interactions.



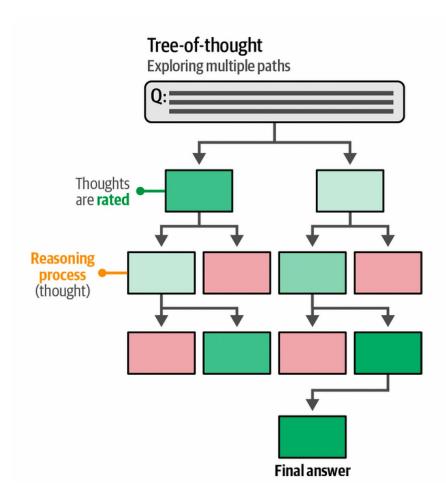
Motivation

Existing planning methods struggle with:

- > **Uncertainty** large space of possibilities
- > Lack of adaptation to historical interaction patterns

Tree-based planning is **powerful** but **expensive**.

- > Can we balance exploration-exploitation?
- > Can we learn from prior interactions?

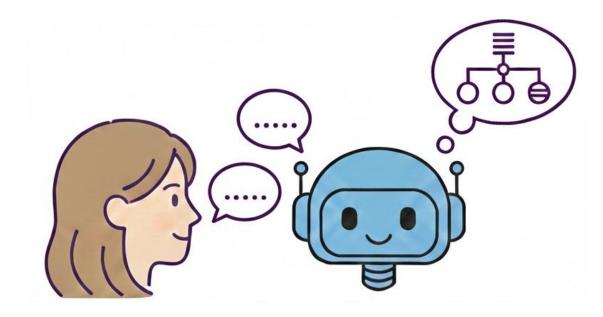


Proposed Solution

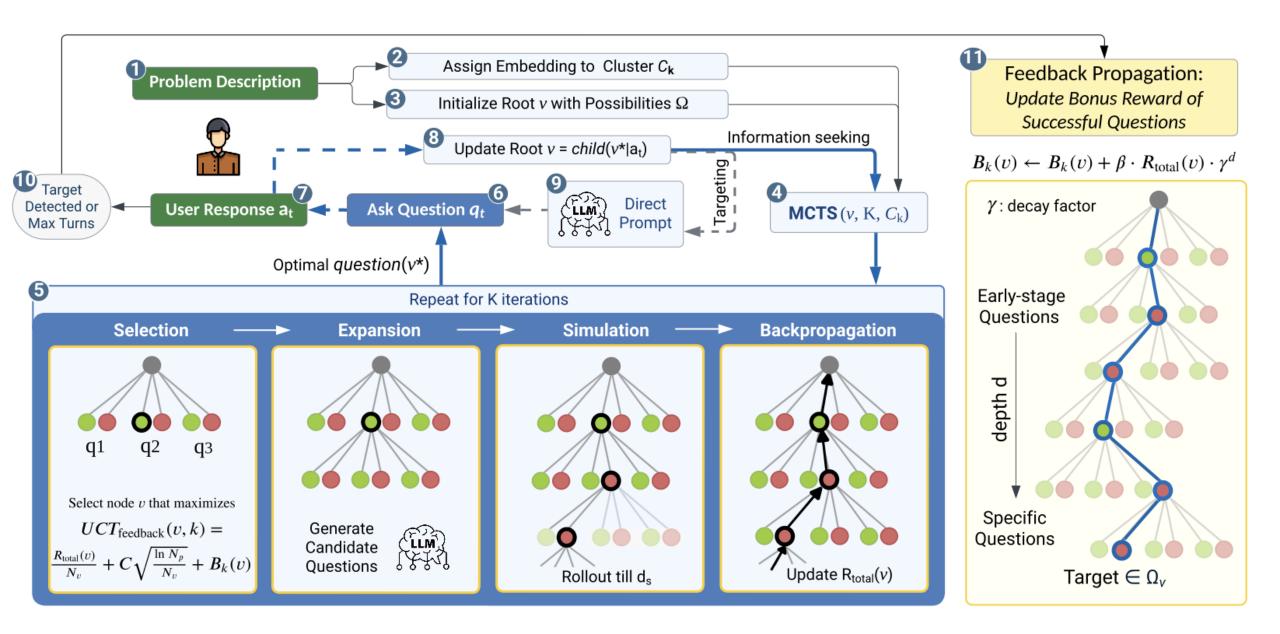
MISQ-HF: Monte Carlo Tree Search for Information Seeking Questions with Hierarchical Feedback

Combines

- LLMs for generating candidate questions
- MCTS to efficiently plan under uncertainty
- Similarity-based feedback to reuse questioning strategies from past conversations.



Workflow



Method

Decision Tree Construction:

- LLM generates **candidate questions** to split the current possibilities.
- · Node attributes: Question, Answer, Remaining possibilities,

Total reward, Cluster-based Bonus reward

MCTS Phases:

• **Selection**: Based on a **modified UCT** (Upper Confidence Bound for Trees).

$$UCT_{ ext{feedback}}(v,k) = rac{R_{ ext{total}}(v)}{N_v} + C\sqrt{rac{\ln N_p}{N_v}} + B_k(v)$$

- Reward: Expected information gain (uncertainty reduction)
- **Expansion**: Generate new questions if needed.
- **Simulation**: Simulate random rollouts to estimate long-term reward.
- Backpropagation: Update rewards and visit counts of ancestor nodes.

Method

Hierarchical Feedback Mechanism

- After a successful conversation, update bonus rewards for nodes along the successful questioning path. $B_k(v) \leftarrow B_k(v) + \beta \cdot R_{\text{total}}(v) \cdot \gamma^{d_v}$
- Bonus rewards are specific to clusters.
- Early-stage questions (high-level, broadly applicable) get higher bonus (reward decays with depth).

Adaptation: System learns which questions work best for similar problems.

Experimental Setup

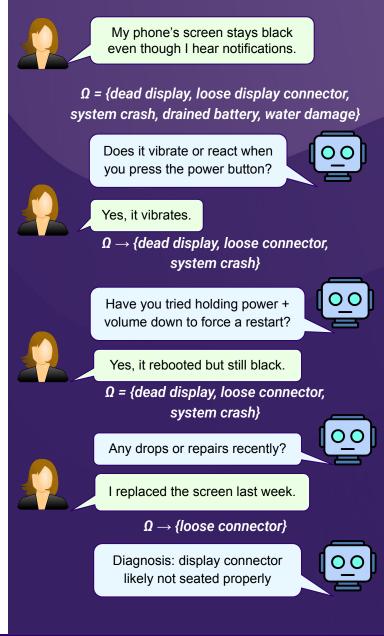
Domains: Medical Diagnosis, Troubleshooting, 20 Questions

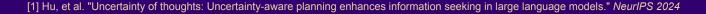
Baselines

- Direct Prompting (DP): No planning
- Uncertainty of Thoughts (UoT): Exhaustive tree expansion. [1]
- MISQ: Our method without feedback

Metrics

- Success Rate (SR)
- Mean Conversation Length in Successful Cases (MSC)
- Question Generation Calls (QGC): Number of LLM calls for planning





Results

12% better Success Rate on average~10x lesser LLM calls for planning

Domain: General

20-Questions

Domain:

Medical Diagnosis (MD)

Troubleshooting (TS)

Method	Ω -		Commo	n	Thing				
Wichiod	aware	SR↑	MSC↓	QGC↓	SR↑	MSC↓	QGC↓		
Llama 3	.3 70B I	nstruct							
UoT	×	39.63	8.27	4.08	19.00	9.78	4.48		
MISQ	×	41.44	8.43	5.05	23.5	9.57	1.57		
DP	√	45.94	13.70	-	32.50	13.27	-		
UoT	✓	61.26	9.94	7.92	35.50	11.43	3.40		
MISQ	\checkmark	74.77	9.90	4.74	59.50	10.68	3.31		
Mixtral	8*7B In	struct							
DP	√	8.10	14.33	-	7.50	13.46	-		
UoT	✓	28.82	11.56	4.34	12.50	13.52	5.91		
MISQ	\checkmark	37.83	11.38	2.39	20.00	11.50	0.06		
GPT-40									
DP	√	63.06	14.72	=	40.50	14.16	-		
UoT	\checkmark	74.77	8.59	5.88	47.00	9.13	2.75		
MISQ	✓	85.58	8.51	4.86	55.50	9.54	2.19		

Model	Method	Ω -aware	MD: DX			MD: MedDG			TS: FloDial		
			SR↑	MSC↓	QGC↓	SR↑	MSC↓	QGC↓	SR↑	MSC↓	QGC↓
Llama 3.3 70B Instruct	UoT	×	72.11	1.54	0.36	79.51	2.09	4.95	34.64	6.84	43.76
	MISQ	×	75.00	2.17	0.05	86.56	3.39	0.40	35.29	9.09	3.99
	MISQ-HF	×	80.76	1.94	0.21	86.78	3.29	0.78	39.86	9.09	4.07
	DP	✓	88.46	3.15	-	84.14	3.93	-	21.56	13.72	- 1
	UoT	✓	79.80	1.65	0.77	89.86	2.16	4.84	60.78	8.47	44.61
	MISQ	✓	92.30	1.28	0.48	92.29	3.44	3.59	62.74	9.73	5.16
	MISQ-HF	✓	98.07	1.84	0.04	93.39	3.35	0.54	67.97	9.81	3.97
Mixtral 8*7B Instruct	DP	✓	50.00	3.50	-	76.43	3.91		16.99	14.23	
	UoT	✓	76.92	1.43	0.45	83.70	2.19	5.70	39.21	7.01	45.11
	MISQ	✓	63.46	2.63	0.08	76.55	3.33	0.17	47.71	10.45	1.66
	MISQ-HF	✓	76.92	2.40	0.06	84.58	3.08	0.33	49.01	9.62	1.46
GPT-40	DP	✓	73.07	3.48	-	81.27	3.98	-	43.79	14.86	-
	UoT	✓	82.69	1.18	0.17	88.79	2.03	1.81	59.47	8.14	41.86
	MISQ	✓	87.50	1.97	0.05	89.20	3.46	0.60	74.50	10.15	4.10
	MISQ-HF	✓	99.03	2.19	0.03	90.30	3.42	0.41	72.54	10.36	2.94

Results

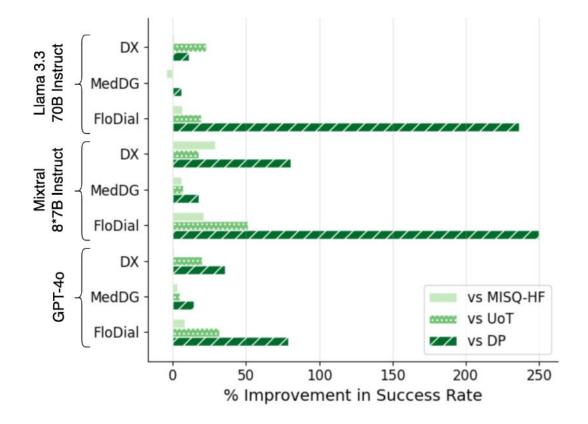


Figure 3: Improvement in Success Rate on MD and TS Domain in a Closed Set scenario, when initializing the root node with the constrained set of possibilities $\Omega_c \subseteq \Omega$.

+8% improvement in Success Rate when starting with a constrained set of possibilities at the root node as compared to using the full set.

Conclusion

MISQ-HF.

- Enables adaptive, efficient information-seeking.
- Learns from historical successes using cluster-based feedback.
- Reduces computational cost without sacrificing accuracy.

Future Directions:

- Multi-dimensional Reward for better questions.
- Collect data for RLHF: train policies with positive and negative interactions

Thank you.

Harshita Chopra
PhD Student
hchopra3@cs.washington.edu
UNIVERSITY of WASHINGTON

