# Scaling Offline RL via Efficient and Expressive Shortcut Models

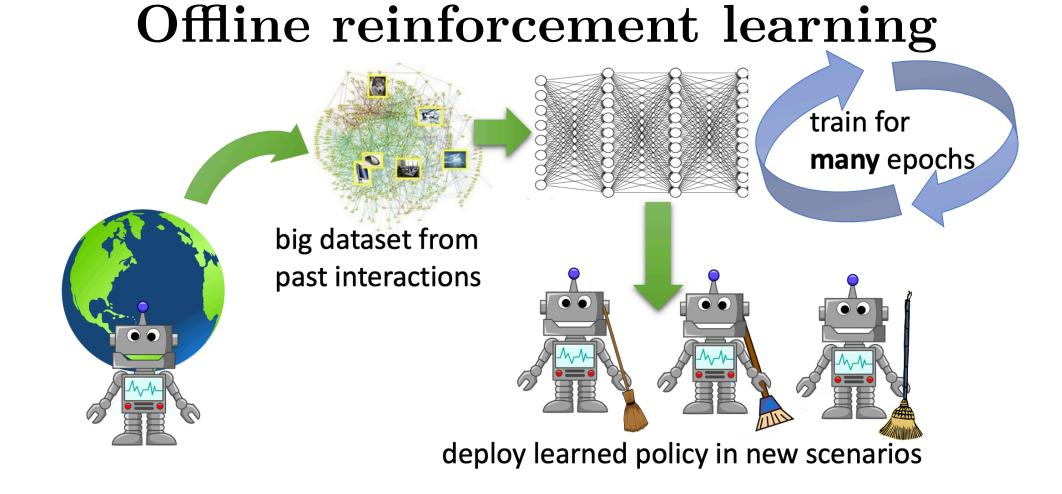
#### Nicolas Espinosa Dice

Joint work with

Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kianté Brantley, Wen Sun

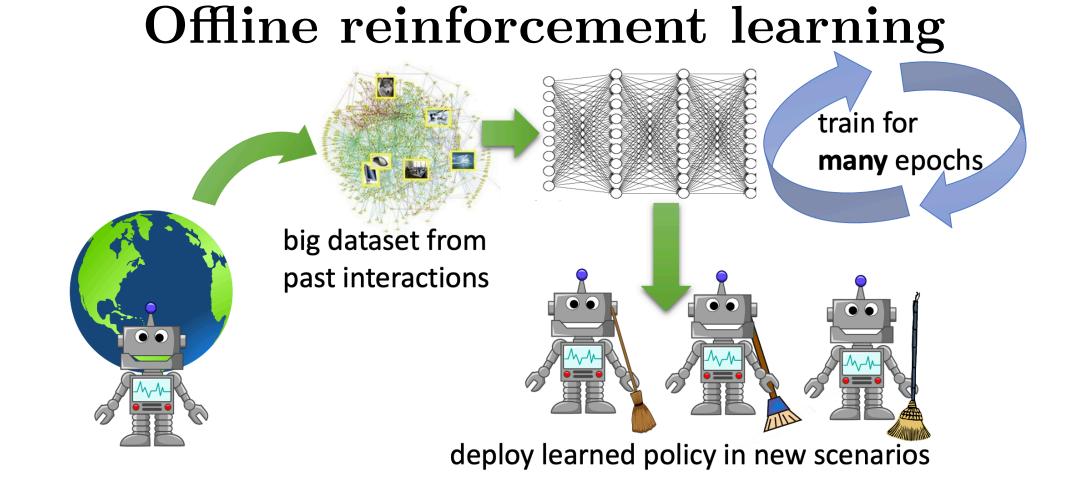


Axes of scale



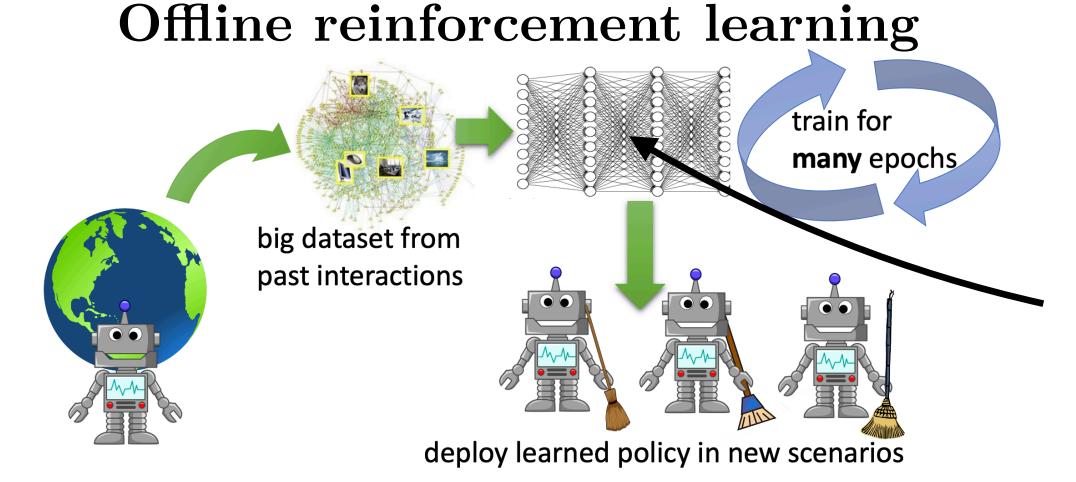
Axes of scale

1. Data



#### Axes of scale

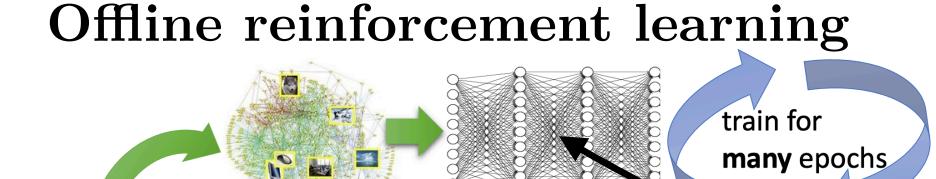
- 1. Data
- 2. Models

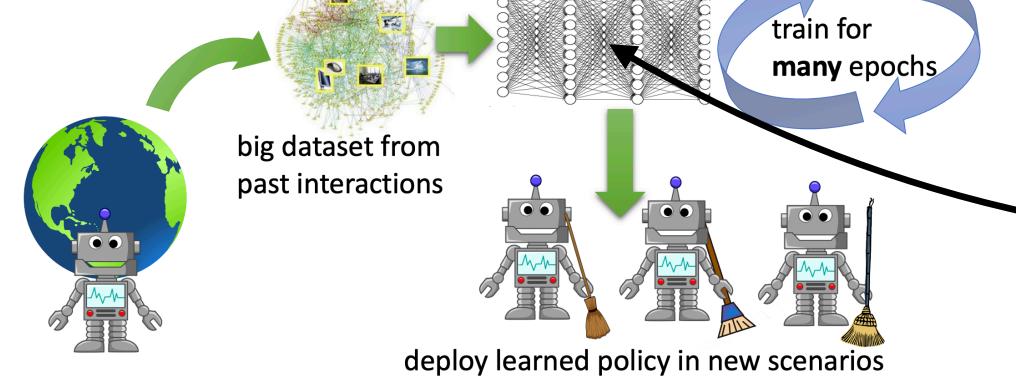


Represent policy via modern generative models (e.g. diffusion & flow models)

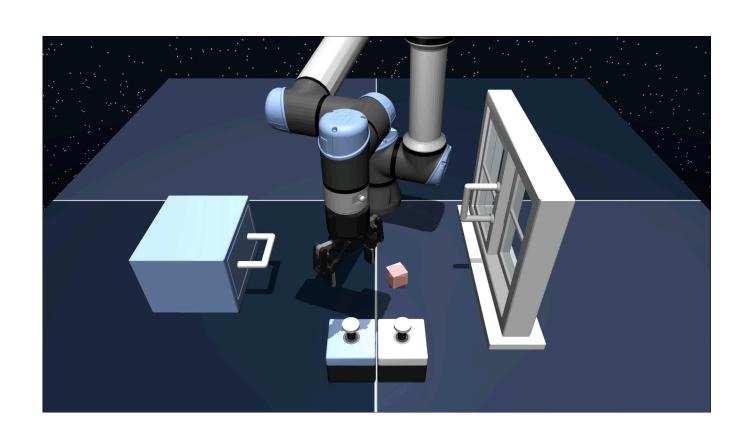
#### Axes of scale

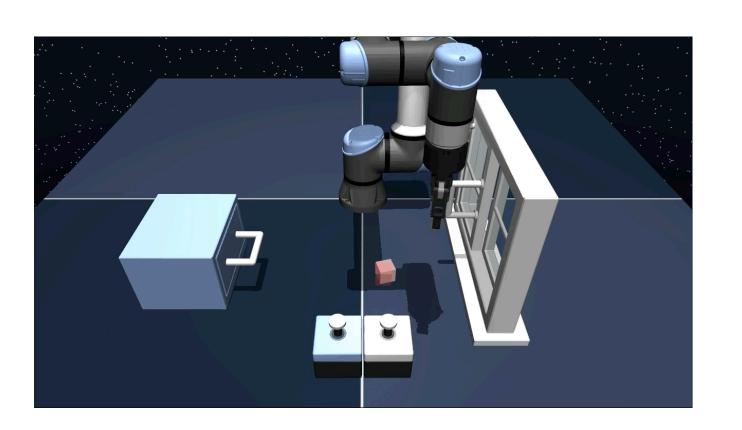
- 1. Data
- 2. Models





Represent policy via modern generative models (e.g. diffusion & flow models)

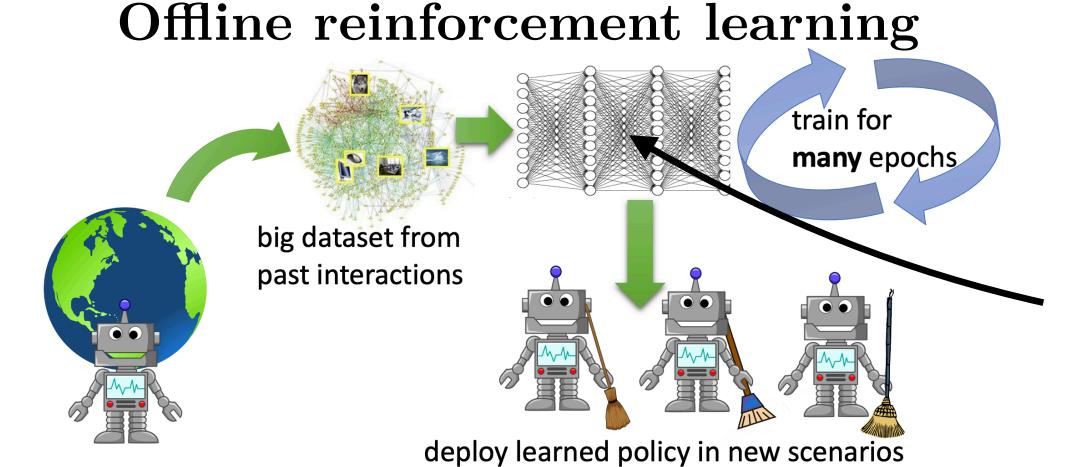




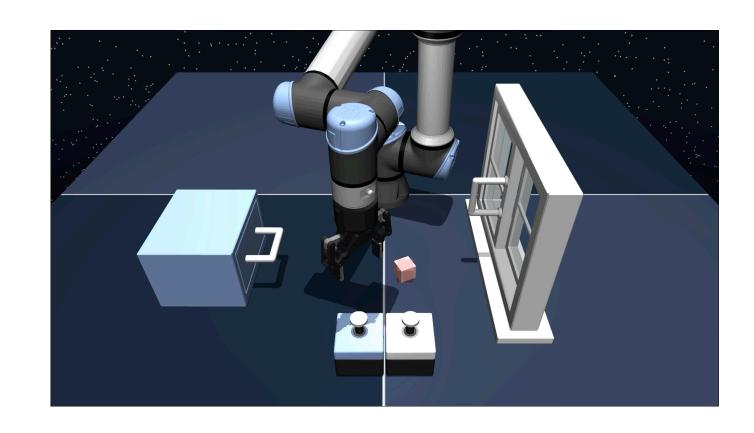
Advantages: model multi-modal data

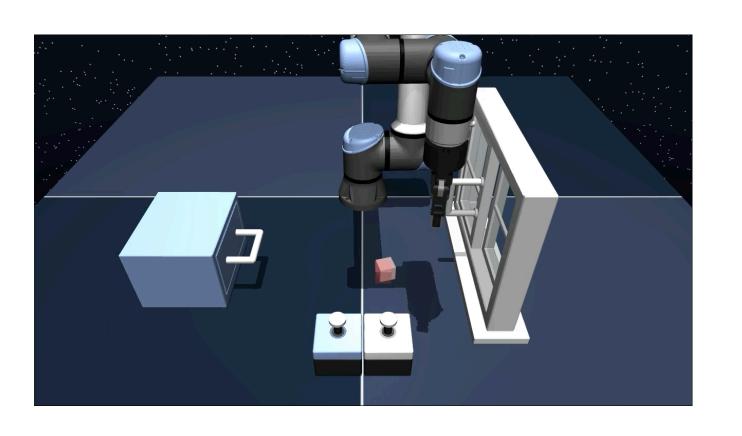
#### Axes of scale

- 1. Data
- 2. Models
- 3. Compute



Represent policy via modern generative models (e.g. diffusion & flow models)

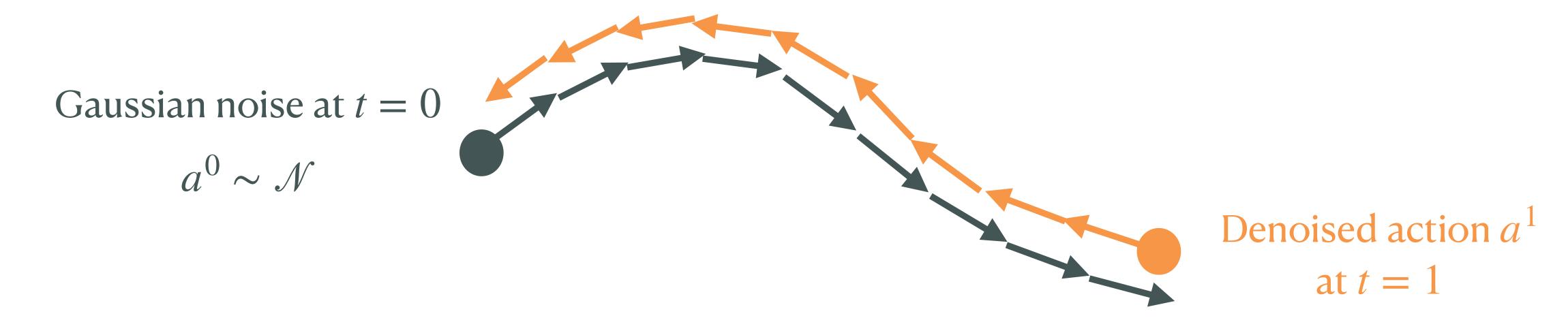




Advantages: model multi-modal data

# RL with diffusion/flow policies

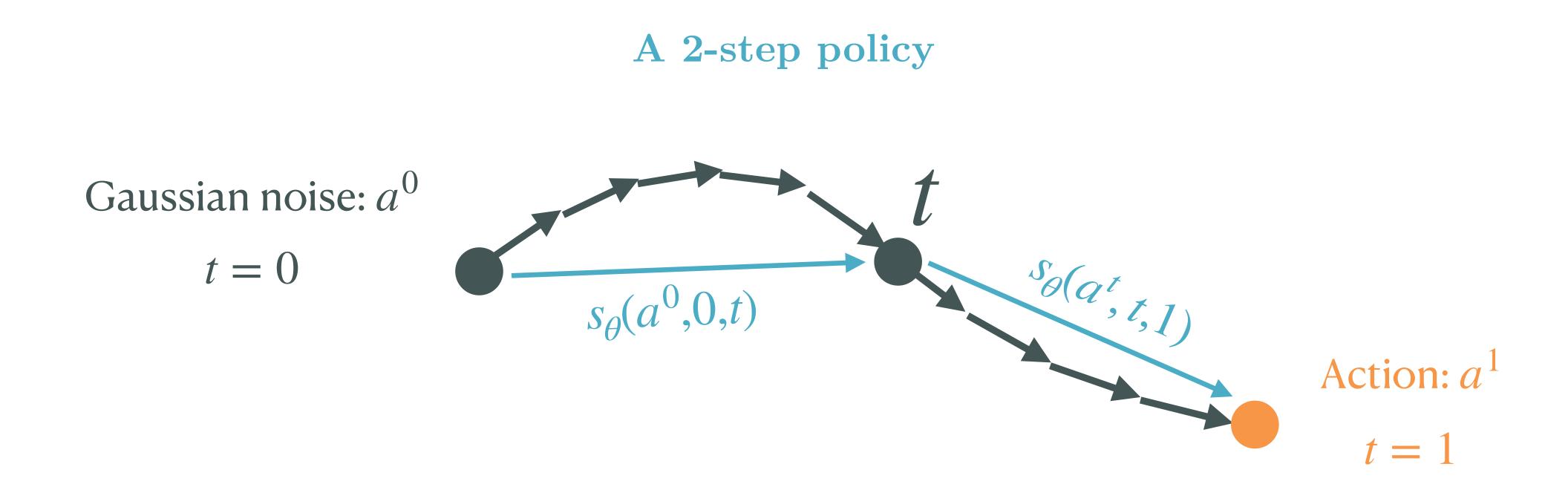
Flow policy generates action  $a^1 \sim \pi(\cdot \mid s)$ 



Given  $Q(s, a^1)$ , optimize  $\theta$  via backpropagation through time (BPTT)

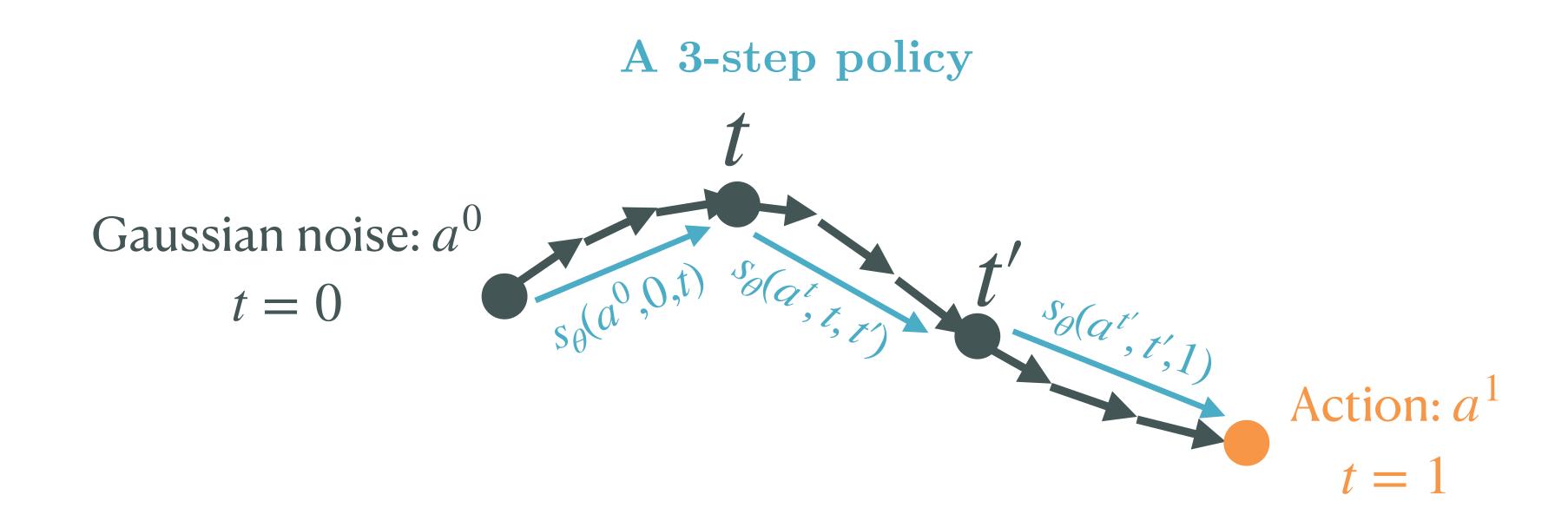
$$\frac{\partial Q}{\partial \theta} = \frac{\partial Q}{\partial a^1} \cdot \frac{\partial a^1}{\partial \theta}$$

#### Shortcut models: a flow model with "shortcuts"



 $s_{\theta}$ : a differentiable function modeling a jump for some time interval t

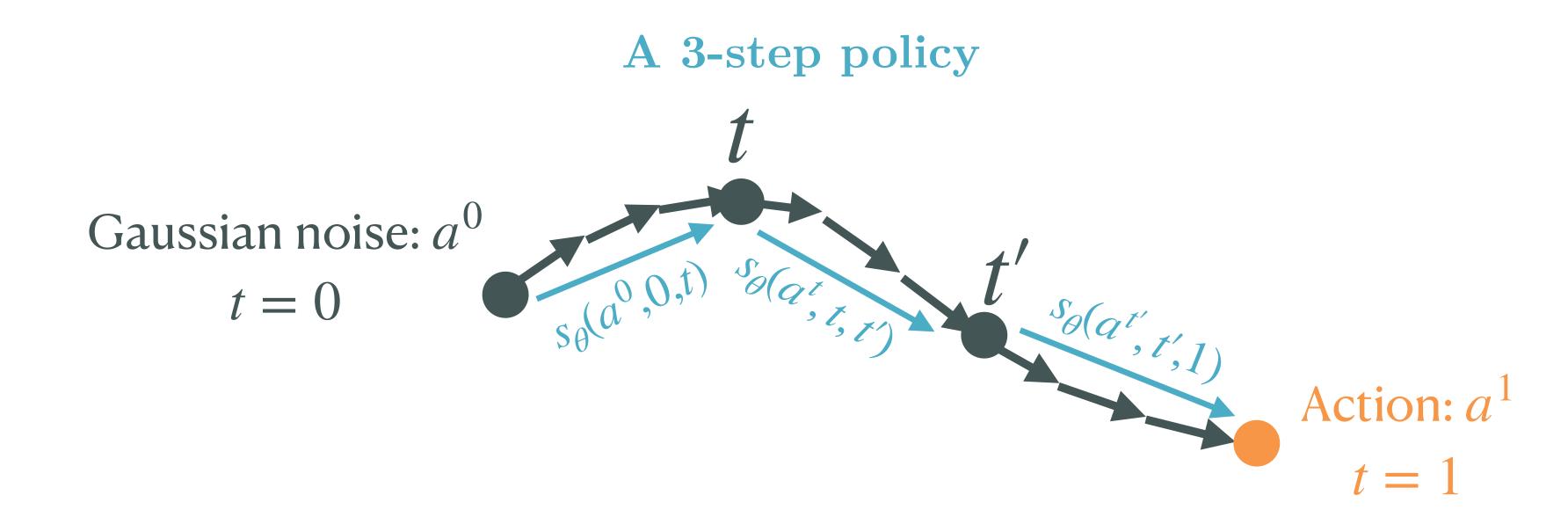
#### Shortcut models: a flow model with "shortcuts"



#### Key Advantage:

Unlike flow models, shortcut models are expressive with just a few steps

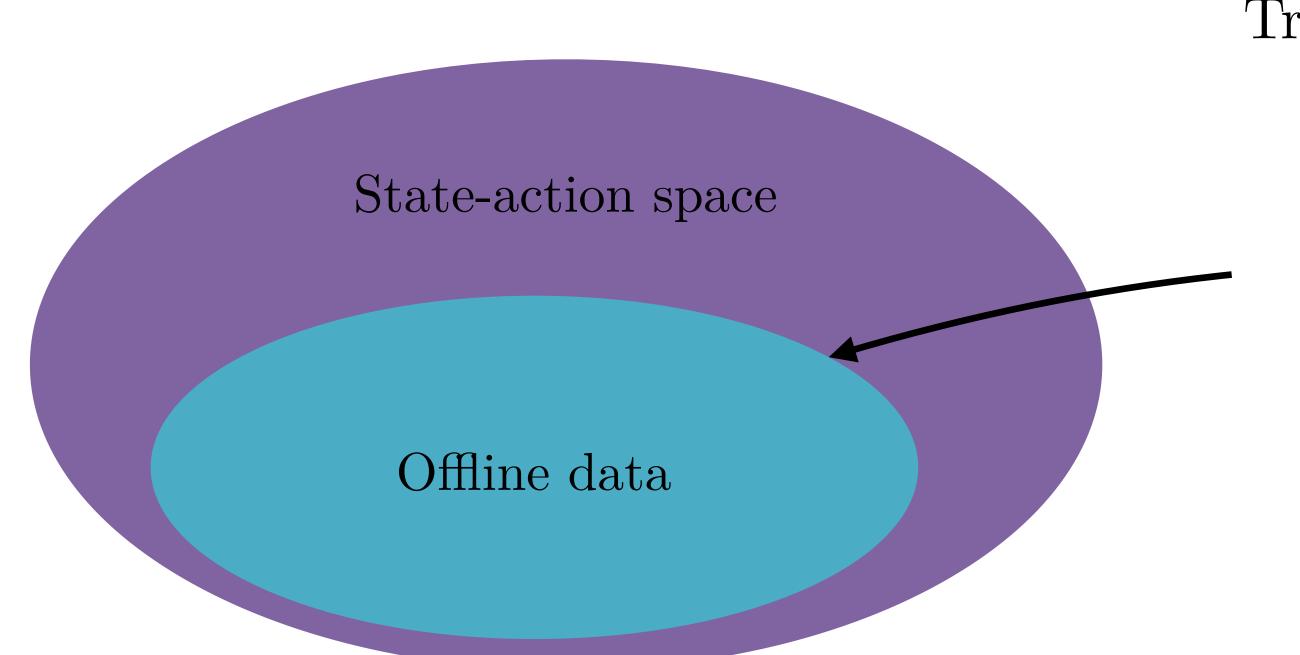
# Optimizing shortcut policies



Given  $Q(s, a^1)$ , optimize  $\theta$  via backpropagation k-steps

$$\frac{\partial Q}{\partial \theta} = \frac{\partial Q}{\partial a^1} \cdot \frac{\partial a^1}{\partial \theta}$$

# Training a shortcut policy in offline RL setting



#### Key Challenge

Training with offline data alone easily runs into covariate shift problems

#### Goal

Design algorithms that restrict search space inside the offline data's coverage

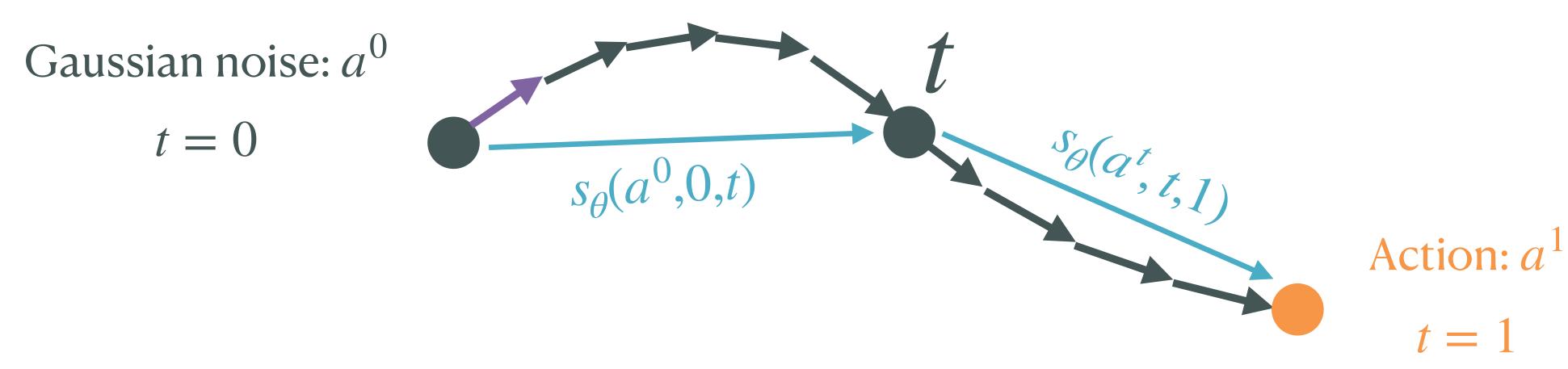
#### Solution

Regularize to the offline data

# How do we regularize to the offline data?

Learned policy Key idea

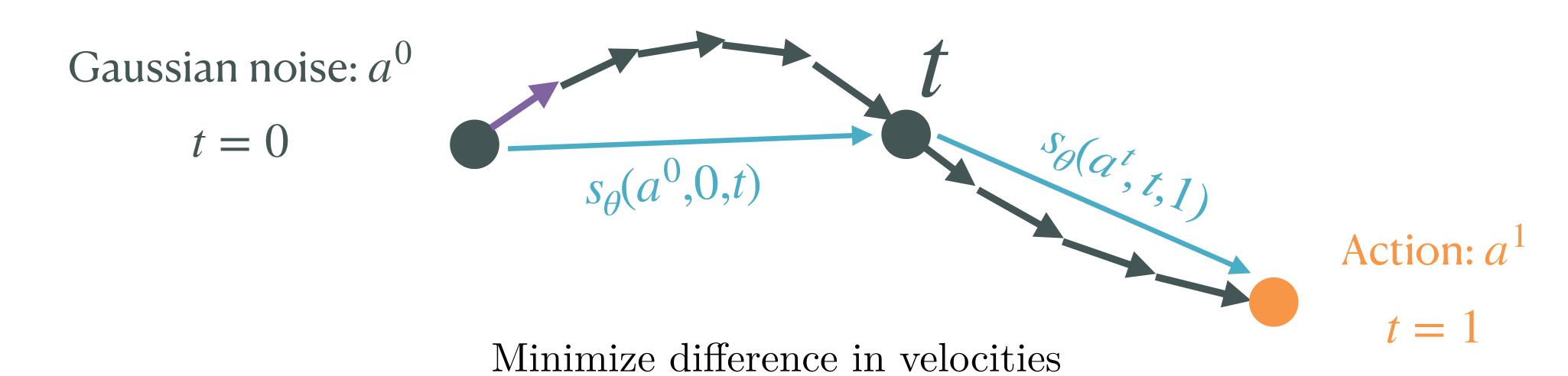
Match distributions of  $\pi_{\theta}$  and  $\pi_{B}$  through flow matching  $\rightarrow$  match velocity of  $\pi_{B}$ 's flow



When  $t \to 0$ ,  $s_{\theta}$  models instantaneous velocity of generator's flow

# How do we regularize to the offline data?

Learned policy Key idea Behavior policy Match distributions of  $\pi_{\theta}$  and  $\pi_{B}$  through flow matching  $\to$  match velocity of  $\pi_{B}$ 's flow

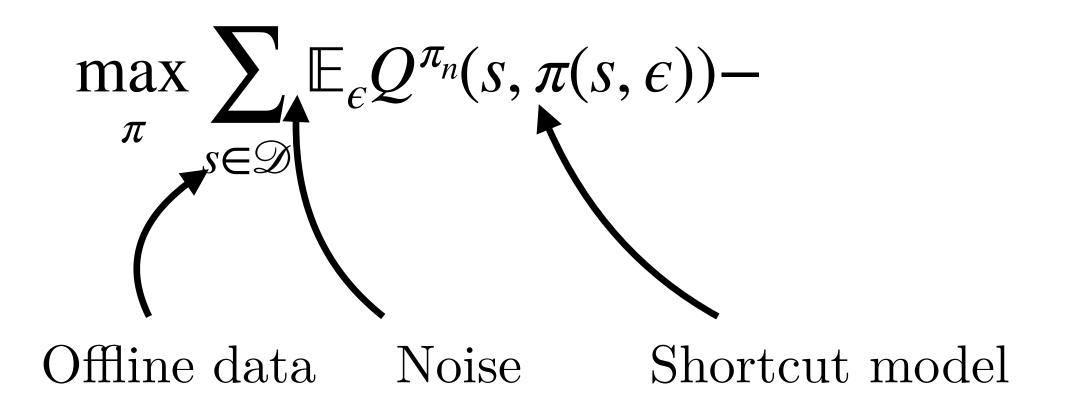


$$\min_{\theta} \| \underbrace{s_{\theta}(a_t, t, t + \Delta)}_{\text{flow at noised action } a_t} - \underbrace{\text{velocity}(\pi_B(\cdot \mid s), t)}_{\text{position}} \|_2$$

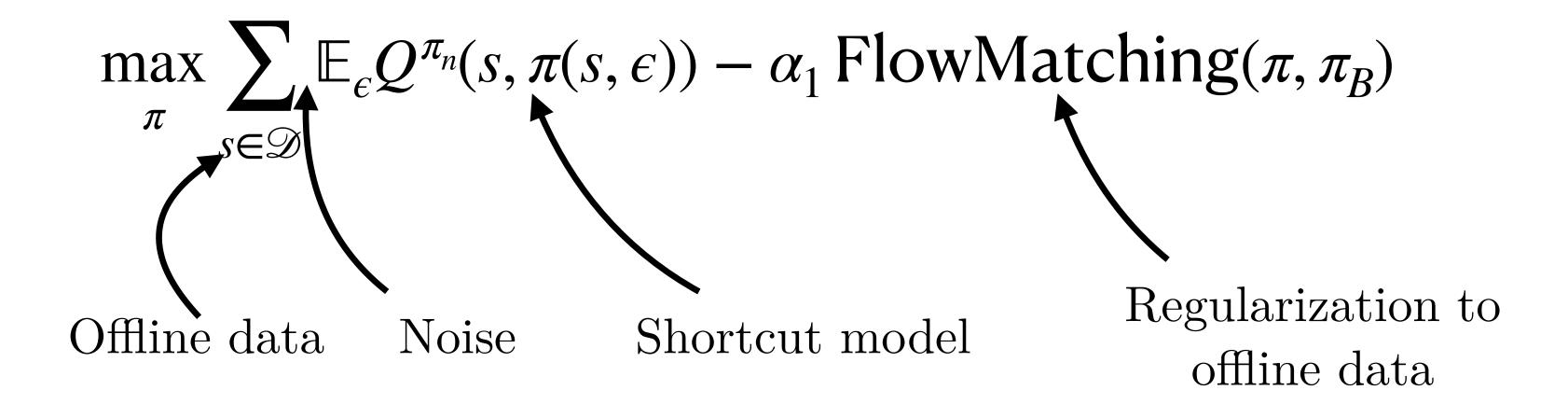
1. Value Learning: Train  $Q^{\pi_n}$  with TD learning

1. Value Learning: Train  $Q^{\pi_n}$  with TD learning

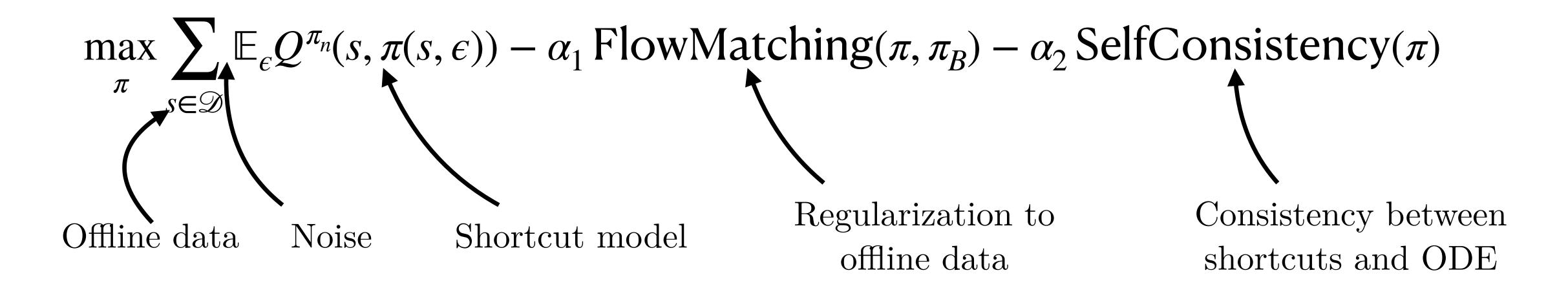
1. Value Learning: Train  $Q^{\pi_n}$  with TD learning



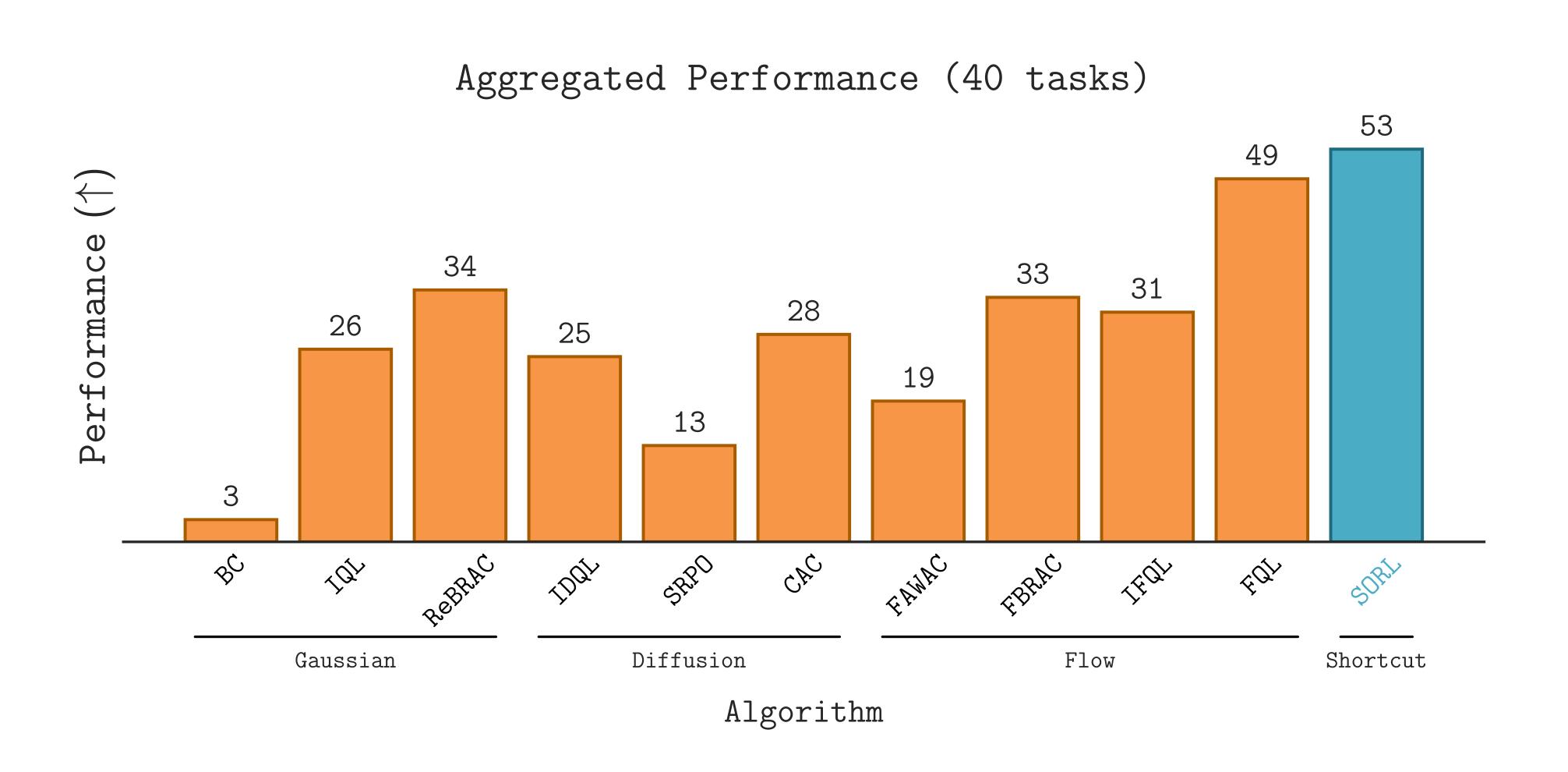
1. Value Learning: Train  $Q^{\pi_n}$  with TD learning



1. Value Learning: Train  $Q^{\pi_n}$  with TD learning



## SORL outperforms 10 baselines across 40 OGBench tasks



## Axes of Scale in Offline RL

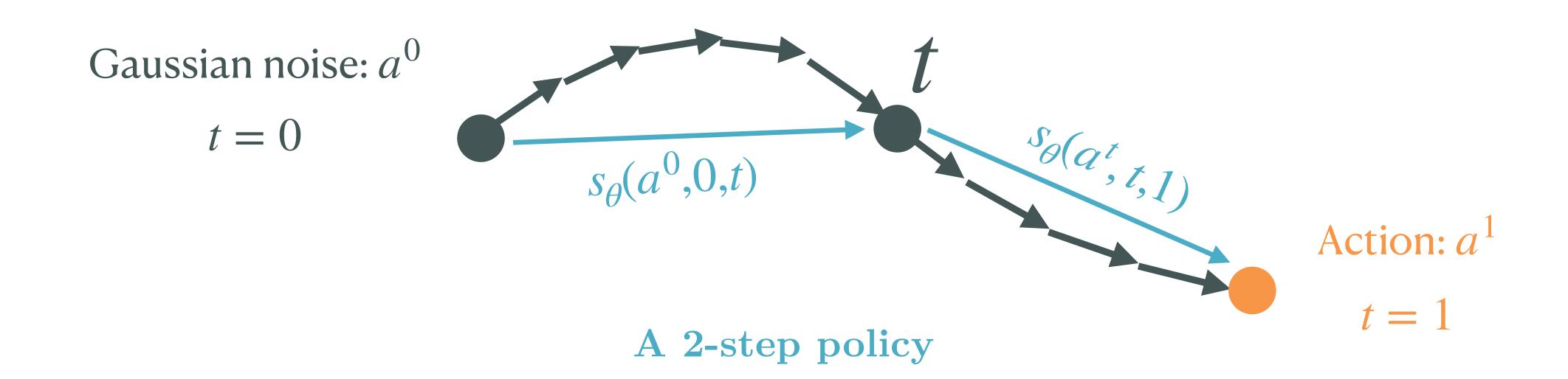




? Compute

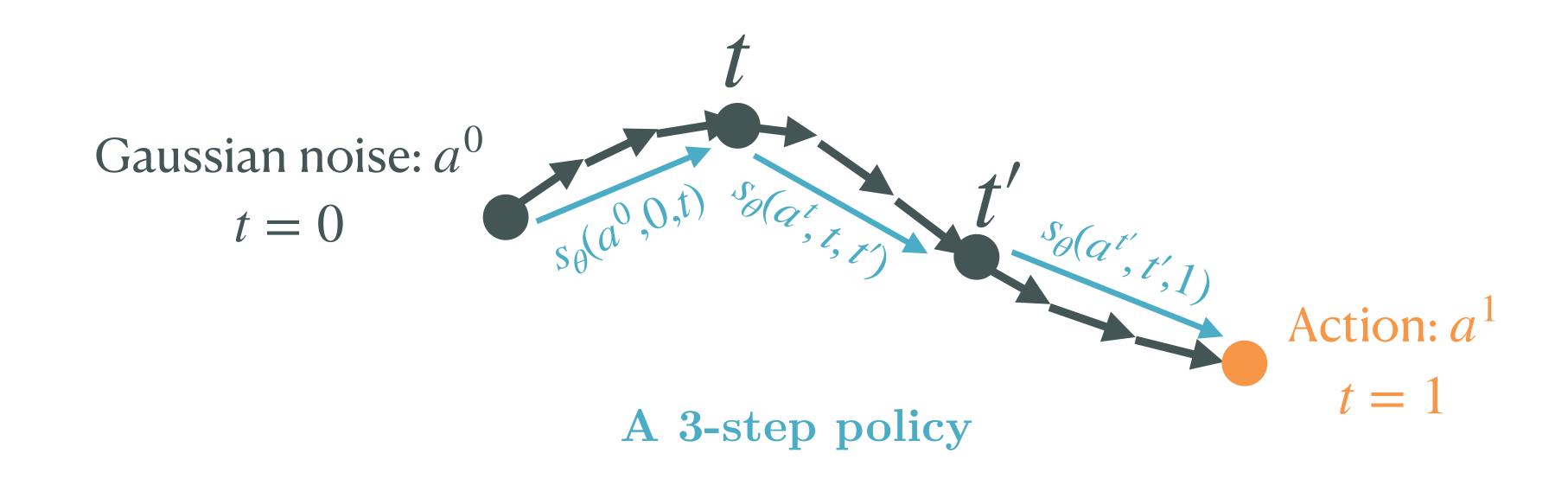
# SORL enables test-time sequential scaling

At test-time, leverage more computation by using more "jumps"



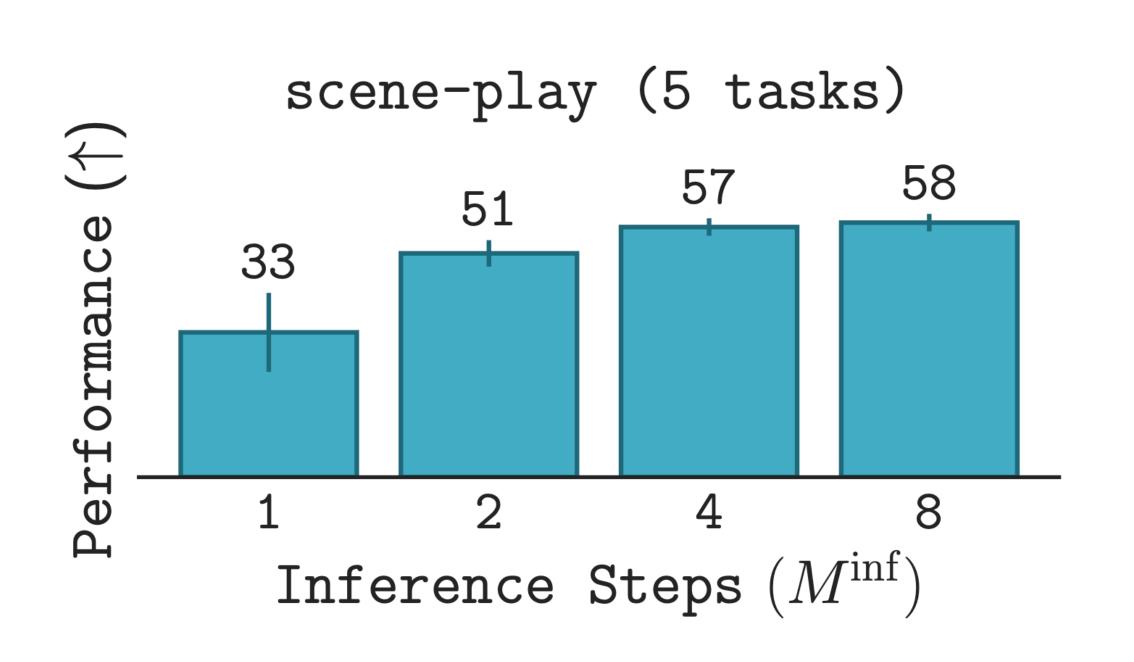
## SORL enables test-time sequential scaling

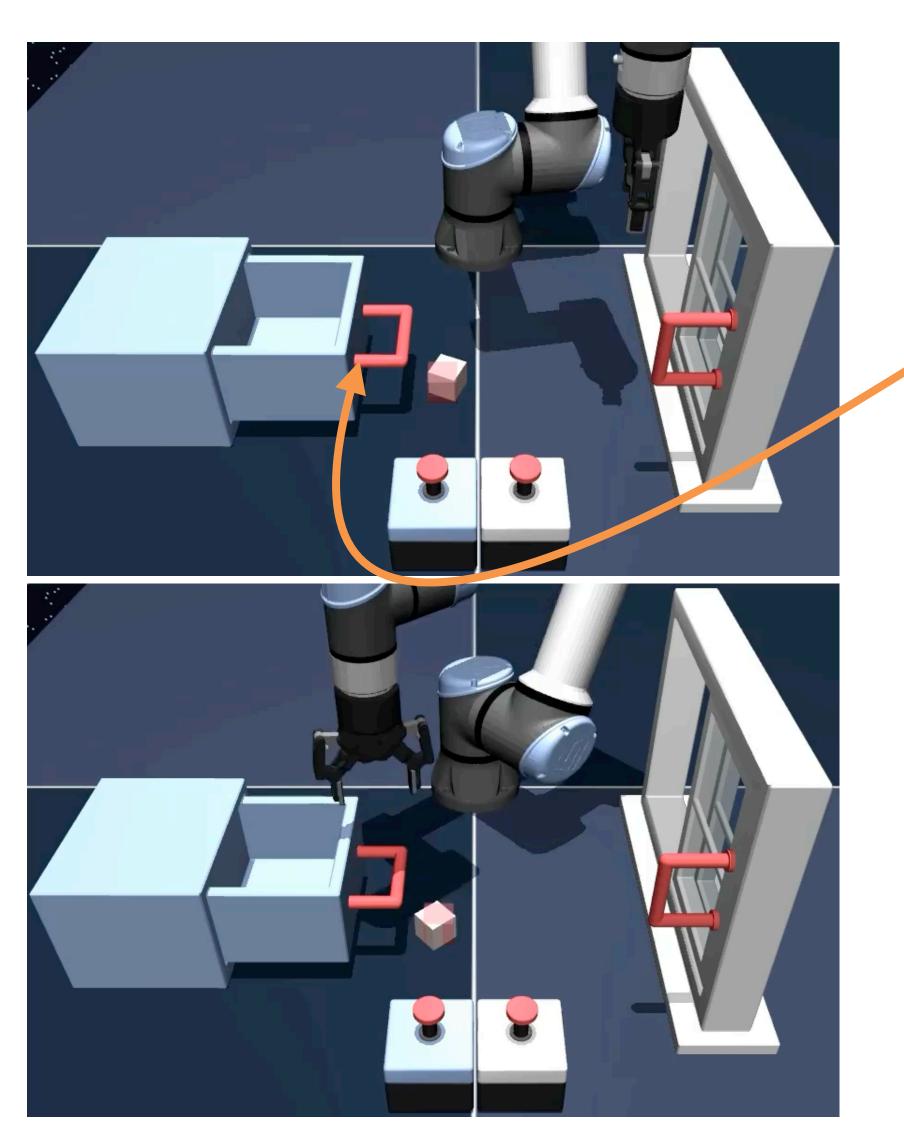
At test-time, leverage more computation by using more "jumps"



Policies with more steps can model richer distributions, enabling better optimization of reward

# Q: Is sequential scaling helpful?



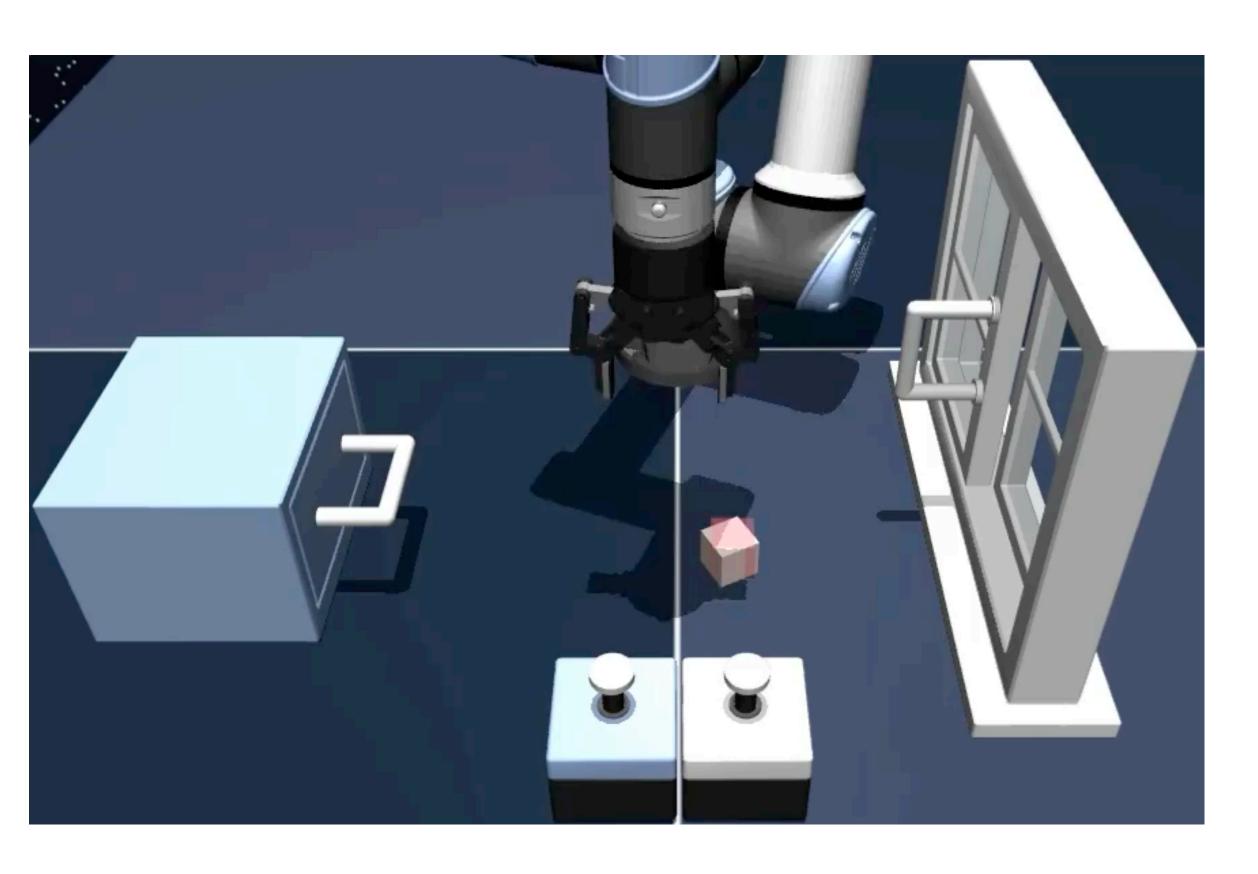


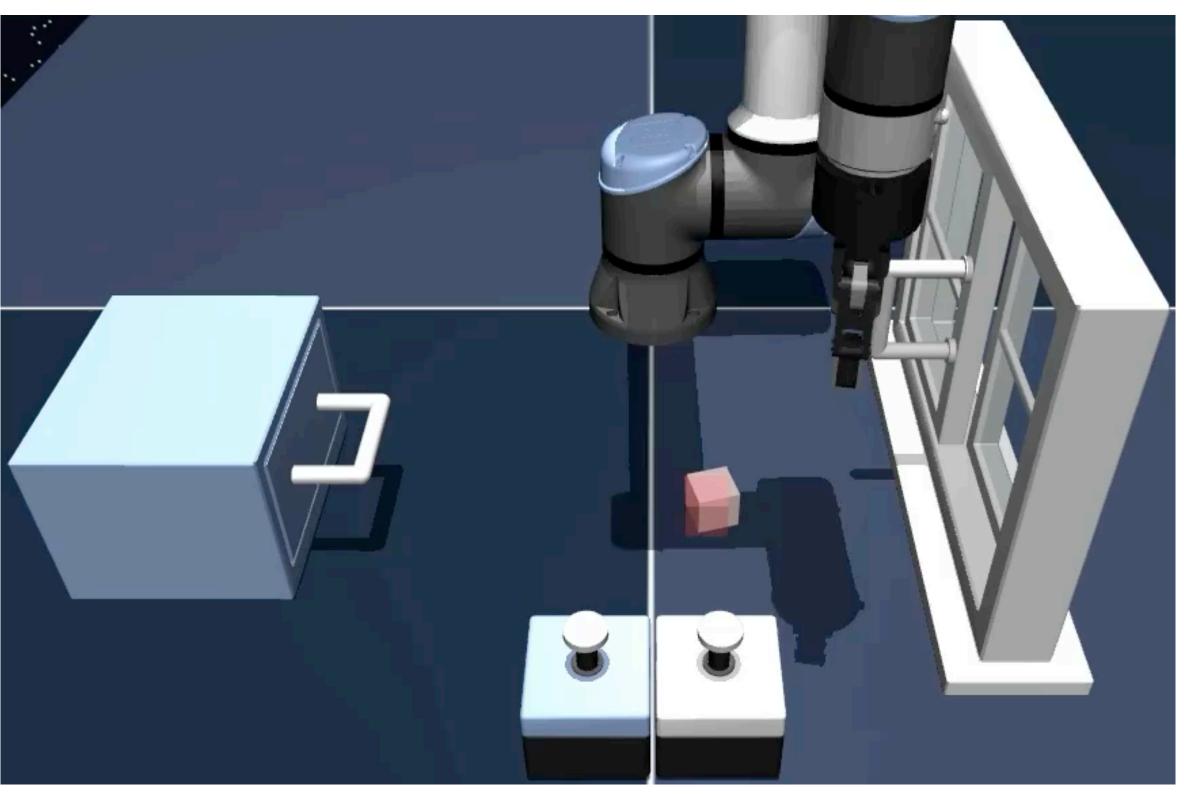
*1-step policy* struggles to close door

8-step policy solves task smoothly

# Q: Is sequential scaling helpful?

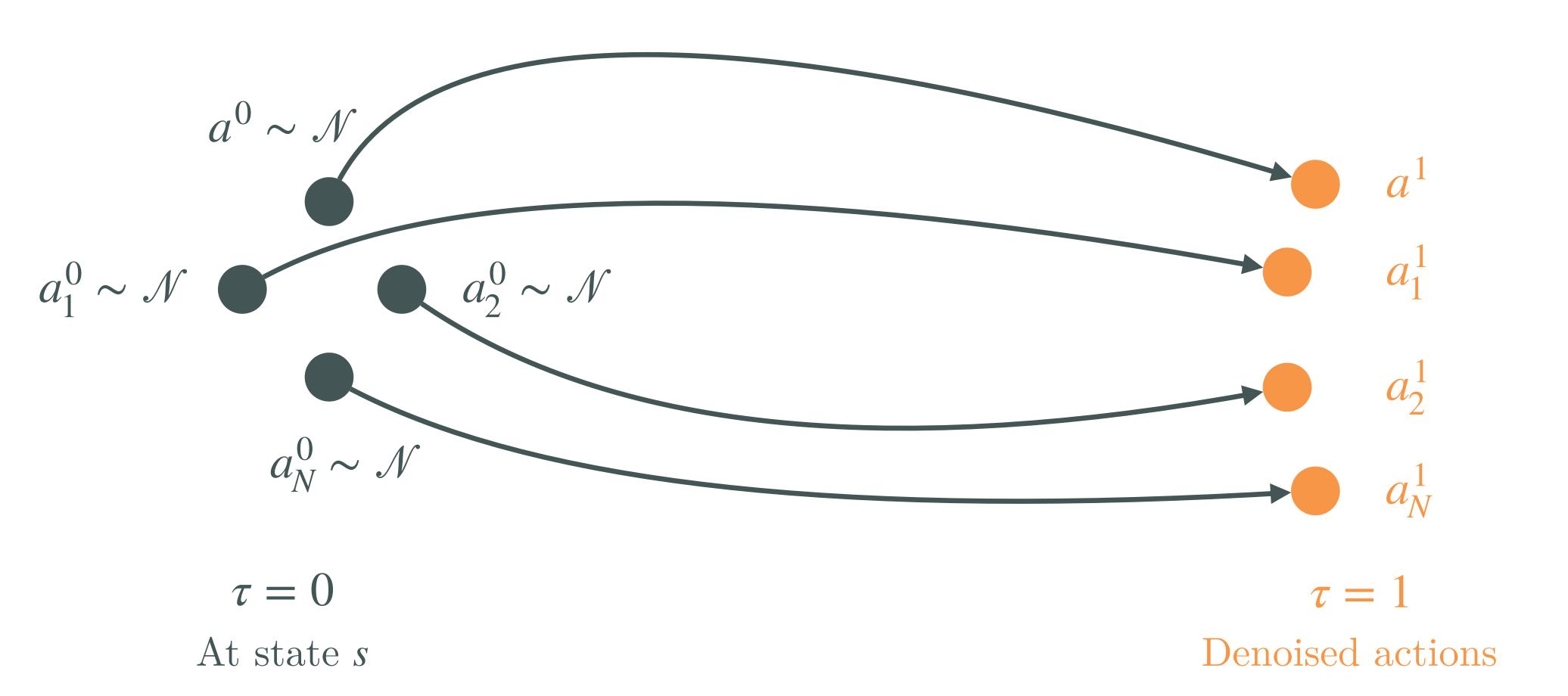
Qualitatively, more inference steps leads to more precise actions



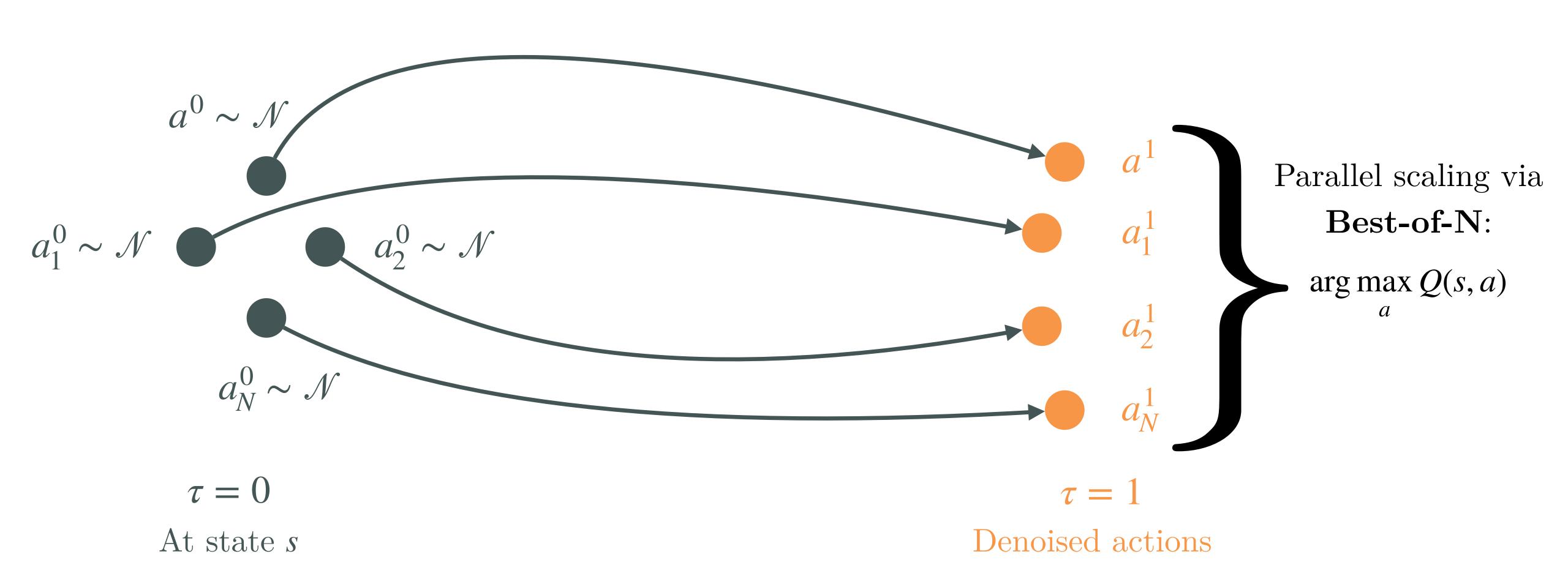




Search over multiple action candidates

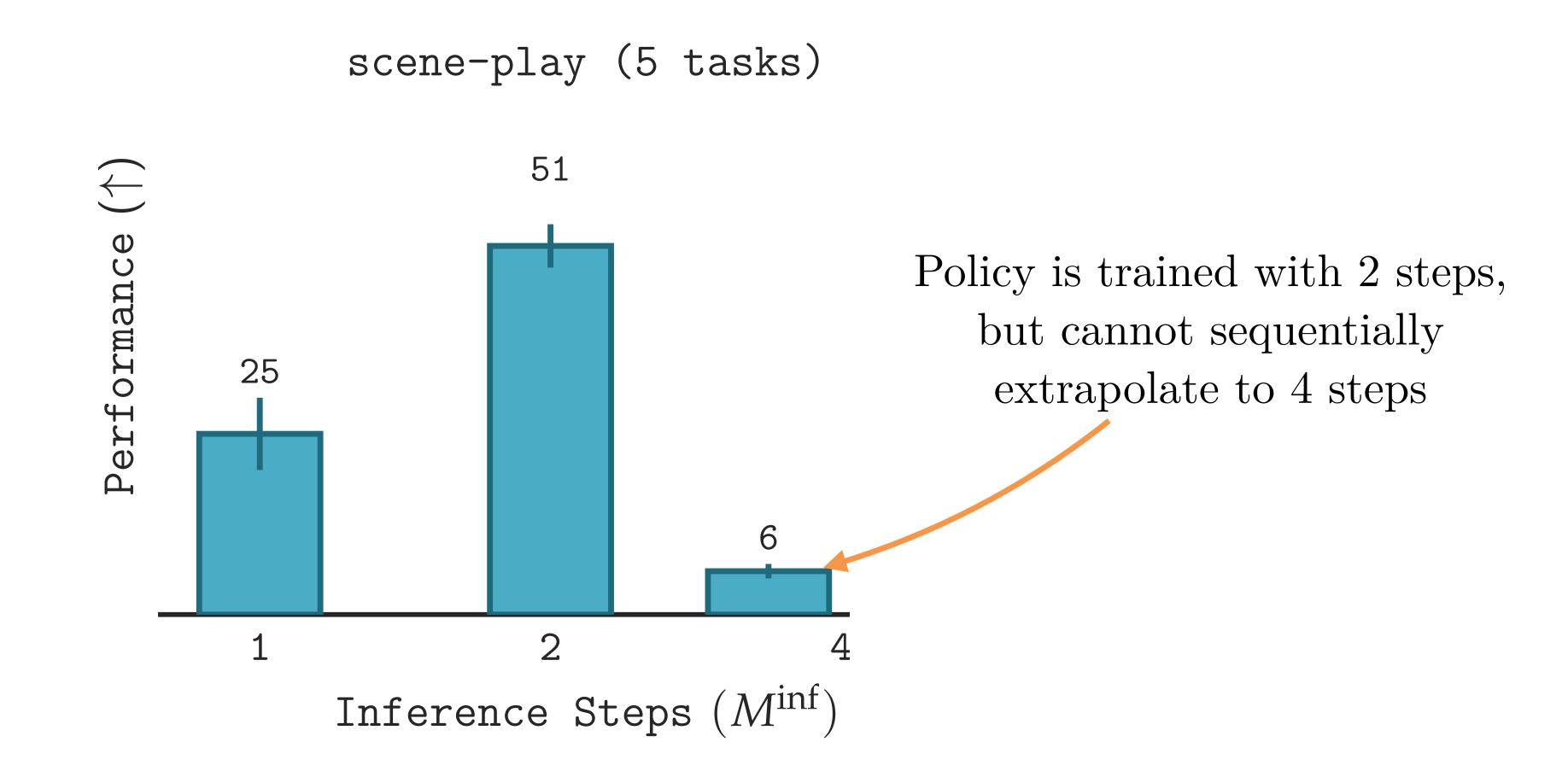


Search over multiple action candidates, using the Q function as a verifier



## Q: Is parallel scaling helpful?

Unlike LLMs, improvement from BoN is not obvious



## Q: Is parallel scaling helpful?

Unlike LLMs, improvement from BoN is not obvious **But BoN enables sequential extrapolation** 

scene-play (5 tasks) 51 54 Performance  $M^{\mathrm{BTT}}=2$ /// BoN 4-step + BoN enables sequential extrapolation 6 Inference Steps  $(M^{\text{inf}})$ 

### Takeaways

Shortcut model is expressive while being suitable for RL training

Sequential and parallel scaling in general improves performance

In additional to scaling dataset, leveraging rich generative models and scaling test-time computation is a promising direction for RL



nico-espinosadice.github.io/projects/sorl

# Scaling Offline RL via Efficient and Expressive Shortcut Models

#### Nicolas Espinosa Dice



Joint work with

Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kianté Brantley, Wen Sun

