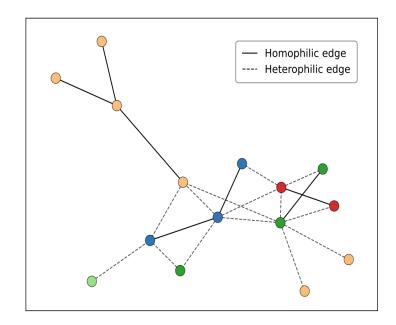


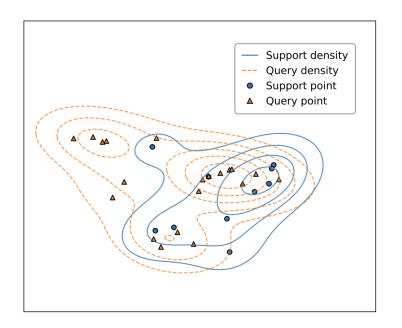
Graph Few-Shot Learning via Adaptive Spectrum Experts and Cross-Set Distribution Calibration

Yonghao Liu^{1*}, Yajun Wang^{1*}, Chunli Guo^{2*}, Wei Pang³, Ximing Li^{1,4}, Fausto Giunchiglia⁵, Xiaoyue Feng^{1†}, Renchu Guan^{1†}

¹Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University

²College of Software, Jilin University

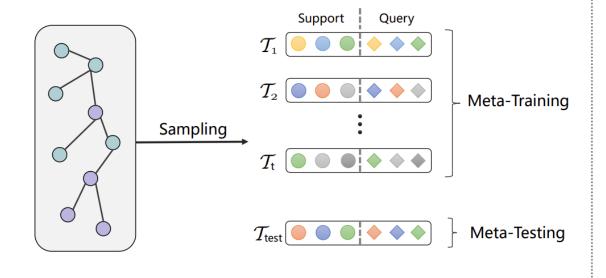

³School of Mathematical and Computer Sciences, Heriot-Watt University

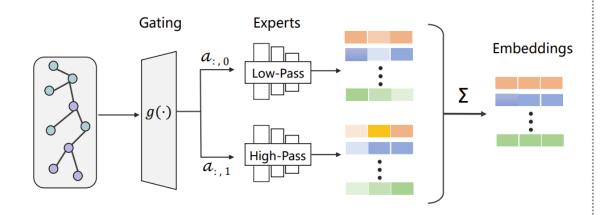

⁴RIKEN Center for Advanced Intelligence Project

⁵Department of Information Engineering and Computer Science, University of Trento

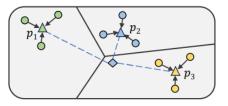
Introduction

- Graph Few-Shot Learning (GFSL) aims to rapidly adapt to novel classes with only a few labeled nodes.
- However, existing GFSL methods still struggle in real-world scenarios due to **two key challenges**:
 - (1) Local structural heterogeneity: different nodes exhibit diverse homophily/heterophily patterns.
 - (2) Distribution shift: support and query sets often follow mismatched distributions.
- These limitations lead to suboptimal node embeddings and unreliable decision boundaries.

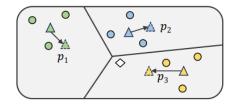

Heterogeneous local structures and distribution shift motivate our design.

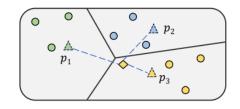

Our contribution:

- We propose a novel framework, GRACE, which integrates **adaptive spectrum experts** and **cross-set distribution calibration** to address the challenges of graph FSL.
- We provide theoretical analysis showing that GRACE offers **improved generalization** guarantees by adapting to local structural heterogeneity and mitigating distribution shift.
- We conduct extensive experiments on multiple benchmark datasets, demonstrating that GRACE consistently outperforms existing **state-of-the-art** methods.


Framework

(a) Episodic-Training




(b) Adaptive Spectrum Experts

(i) Generate prototypes using the embeddings of the support set

(ii) Calibrate the prototypes using the embeddings of the query set

(iii) Classification

(c) Cross-Set Distribution Calibration

Methods

- ➤ Methods (I): Adaptive Spectrum Experts
- 1. The Low-Pass Expert: Uses a Graph Convolutional Network (GCN), which acts as a low-pass filter to smooth features, ideal for homophilic regions.

$$H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

• 2. The High-Pass Expert: Designed to capture heterophilic structures by amplifying feature differences. It computes the difference F between original features (X') and smoothed features (H_{low})

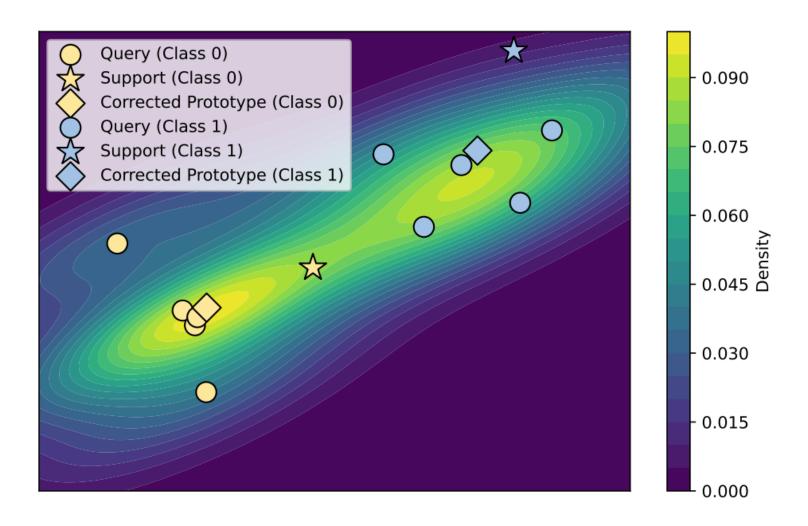
$$H_{high} = softmax(\frac{F_Q F_K^{\top}}{\sqrt{d'}})F_V$$

• 3. Gating Module: Adaptively assigns weights (α) to combine the expert outputs (H_{low} , H_{hign}) into the final node embedding Z.

$$Z = \alpha_{:,0}H_{low} + \alpha_{:,1}H_{high}$$

Methods

- > Methods (II): Cross-Set Distribution Calibration
- **Problem:** Standard Prototypical Networks can fail due to the distribution discrepancy between support (S) and query (Q) sets.
- Step 1: Compute Initial Prototypes: Calculate class prototypes P from the support set embeddings Z^s .


$$P_k = \frac{1}{K} \mathbb{I}[Y_{t,i} = k] Z_{t,i}^s$$

- Step 2: Calibrate Prototypes: Refine the prototypes using samples in high-density regions of the query distribution, inspired by Kernel Density Estimation (KDE).
- Step 3: Obtain Calibrated Prototypes: A correction vector ΔP is computed, and the final calibrated prototype \hat{P} is obtained.

$$\hat{P} = P + \hat{\beta}\Delta P$$

Methods

➤ Methods (II): Cross-Set Distribution Calibration

Experiments

Datasets

Dataset	#Nodes	#Edges	#Features	#Labels
Cora	2,708	5,278	1,433	7
CiteSeer	3,327	4,552	3,703	6
Amazon-Computer	13,381	245,778	767	10
Coauthor-CS	18,333	81,894	6,805	15
DBLP	40,672	144,135	7,202	137
CoraFull	19,793	65,311	8,710	70
ogbn-arxiv	169,343	1,166,243	128	40

Model Performance

Model	Cora			CiteSeer			Amazon-Computer		
	2 way 1 shot	2 way 3 shot	2 way 5 shot	2 way 1 shot	2 way 3 shot	2 way 5 shot	2 way 1 shot	2 way 3 shot	2 way 5 shot
DeepWalk node2vec GCN SGC	32.95±2.70 31.17±3.16 55.46±2.16 56.75±2.31	36.70±2.99 35.66±2.79 69.96±2.52 70.15±1.99	41.51 ± 2.70 40.69 ± 2.90 67.95 ± 2.36 70.67 ± 2.11	39.56±2.79 40.12±3.15 51.95±2.45 53.72±2.55	39.72 ± 3.42 42.39 ± 2.79 53.79 ± 2.39 55.12 ± 2.59	43.22±3.19 47.20±2.92 55.76±2.56 57.25±2.79	46.49±2.35 49.25±2.56 60.16±2.20 61.29±2.45	49.29 ± 2.46 51.46 ± 2.25 63.46 ± 2.16 65.39 ± 2.06	51.24±2.72 53.49±2.69 67.39±2.46 69.35±2.12
ProtoNet MAML	50.39±2.52 52.40±2.29	52.67±2.28 55.07±2.36	57.92±2.34 57.39±2.23	49.15±2.29 49.15±2.25	52.19±2.96 52.75±2.75	53.75±2.49 54.36±2.39	57.15±2.55 53.72±2.25	60.49±2.09 59.20±2.55	65.12±2.69 61.20±2.59
Meta-GNN GPN G-Meta TENT Meta-GPS X-FNC TEG COSMIC TLP Meta-BP	$\begin{array}{c} 58.82 \pm 2.56 \\ 60.12 \pm 2.12 \\ 59.72 \pm 3.15 \\ 55.39 \pm 2.16 \\ 62.19 \pm 2.12 \\ 61.47 \pm 2.99 \\ 62.52 \pm 2.95 \\ \underline{63.16 \pm 2.47} \\ 60.19 \pm 2.25 \\ 66.42 \pm 4.12 \\ \end{array}$	70.40 ± 2.64 74.05 ± 1.96 74.39 ± 2.69 58.25 ± 2.23 80.29 ± 2.15 78.19 ± 3.25 80.65 ± 1.53 $\overline{65.37\pm2.49}$ 71.10 ± 1.66 76.32 ± 4.30	72.51 ± 1.91 76.39 ± 2.33 80.05 ± 1.98 66.75 ± 2.19 83.79 ± 2.10 82.70 ± 3.19 84.50 ± 2.01 69.10 ± 2.30 85.15 ± 2.19 83.12 ± 4.16	$\begin{array}{c} 55.45 \pm 2.15 \\ 57.36 \pm 2.20 \\ 54.39 \pm 2.19 \\ 60.03 \pm 3.11 \\ 58.95 \pm 2.12 \\ 58.79 \pm 2.56 \\ 59.70 \pm 2.69 \\ 60.95 \pm 2.75 \\ \underline{61.12 \pm 2.10} \\ 60.15 \pm 2.45 \\ \end{array}$	59.71 ± 2.79 64.22 ± 2.92 57.59 ± 2.42 65.20 ± 3.19 69.95 ± 2.02 67.96 ± 3.10 73.79 ± 1.59 70.22 ± 2.56 71.10 ± 2.17 72.19 ± 3.19	61.32 ± 3.22 65.59 ± 2.49 62.49 ± 2.30 67.59 ± 2.95 72.56 ± 2.06 70.29 ± 3.05 76.79 ± 2.12 75.10 ± 2.30 75.55 ± 2.03 76.11 ± 3.29	$\begin{array}{c} 62.36 \pm 2.70 \\ 65.56 \pm 2.60 \\ 64.56 \pm 3.10 \\ 80.75 \pm 2.95 \\ 82.12 \pm 2.55 \\ 81.50 \pm 2.29 \\ \underline{86.49 \pm 2.10} \\ 85.49 \pm 2.46 \\ 83.35 \pm 2.07 \\ 86.10 \pm 4.10 \\ \end{array}$	67.49 ± 2.11 72.19 ± 2.30 69.49 ± 2.42 85.32 ± 2.10 87.10 ± 2.65 86.39 ± 2.29 89.02 ± 2.57 88.26 ± 2.02 89.49 ± 2.06 89.22 ± 4.29	70.15 ± 2.16 76.19 ± 2.21 73.50 ± 2.92 89.22 ± 2.16 90.16 ± 2.05 90.25 ± 2.26 92.40 ± 2.05 91.59 ± 2.59 92.09 ± 2.12 92.39 ± 4.45
GRACE	66.48±2.88	82.40±2.03	86.19±1.80	63.90±2.84	75.67±2.44	79.64±1.79	90.23±0.90	92.46±0.55	94.66±0.50

Model Performance

Model	Coauthor-CS				DBLP				
	2 way 3 shot	2 way 5 shot	5 way 3 shot	5 way 5 shot	5 way 3 shot	5 way 5 shot	10 way 3 shot	10 way 5 shot	
DeepWalk node2vec GCN SGC	59.52±2.72 56.16±4.19 73.52±1.97 75.49±2.15	63.12 ± 3.12 60.22 ± 4.06 77.20 ± 3.01 79.63 ± 2.01	33.76 ± 3.21 30.35 ± 3.93 52.19 ± 2.31 56.39 ± 2.26	40.15 ± 2.96 39.16 ± 3.79 56.35 ± 2.99 59.25 ± 2.16	49.12±2.25 45.65±2.79 64.12±2.15 66.32±2.25	59.12 ± 2.32 55.92 ± 2.36 67.26 ± 2.39 70.19 ± 2.36	37.11 ± 2.19 35.72 ± 2.52 42.16 ± 2.39 40.19 ± 2.26	49.16 ± 2.39 46.19 ± 2.75 56.12 ± 2.10 55.16 ± 2.56	
ProtoNet MAML	71.18±3.82 62.32±4.60	75.51 ± 3.19 65.20 ± 4.20	47.71 ± 3.92 36.99 ± 4.32	51.66±2.51 42.12±2.43	59.95±2.56 55.05±2.30	62.95 ± 2.72 60.67 ± 2.41	32.35 ± 1.62 29.59 ± 2.90	52.95 ± 1.90 40.22 ± 2.61	
Meta-GNN GPN G-Meta TENT Meta-GPS X-FNC TEG COSMIC TLP Meta-BP	$\begin{array}{c} 85.76 \pm 2.74 \\ 85.60 \pm 2.15 \\ 92.14 \pm 3.90 \\ 89.35 \pm 4.49 \\ 90.16 \pm 2.72 \\ 90.95 \pm 4.29 \\ \underline{92.36 \pm 1.59} \\ 89.35 \pm 4.49 \\ 90.35 \pm 4.49 \\ 91.19 \pm 2.21 \\ \end{array}$	87.86 ± 4.79 88.70 ± 2.21 93.90 ± 3.18 90.90 ± 4.24 92.39 ± 1.66 92.03 ± 4.14 93.02 ± 1.24 93.32 ± 1.93 90.90 ± 4.24 92.32 ± 2.11	75.87 ± 3.88 75.88 ± 2.75 75.72 ± 3.59 78.38 ± 5.21 81.39 ± 2.35 82.93 ± 2.02 80.78 ± 1.40 78.38 ± 5.21 82.30 ± 2.05 81.35 ± 2.02	68.59 ± 2.59 81.79 ± 3.18 74.18 ± 3.29 78.56 ± 4.42 83.66 ± 1.79 84.36 ± 3.49 84.70 ± 1.42 85.47 ± 1.42 78.56 ± 4.42 82.12 ± 2.15	$\begin{array}{c} 73.41 \pm 3.20 \\ 75.39 \pm 3.41 \\ 76.49 \pm 3.29 \\ 78.22 \pm 2.10 \\ 79.12 \pm 1.92 \\ 77.45 \pm 2.39 \\ \hline 79.26 \pm 2.49 \\ \hline 78.34 \pm 2.06 \\ 77.49 \pm 3.22 \\ 78.22 \pm 2.10 \\ \end{array}$	77.95 ± 3.12 79.90 ± 2.62 80.12 ± 2.46 81.30 ± 2.02 81.66 ± 2.16 80.69 ± 2.52 82.19 ± 2.40 81.81 ± 2.05 81.95 ± 2.39 81.13 ± 2.55	65.22 ± 2.79 67.20 ± 2.40 68.95 ± 2.70 69.52 ± 2.16 70.16 ± 2.20 69.72 ± 2.39 72.49 ± 2.12 66.53 ± 1.54 71.49 ± 2.35 71.30 ± 2.12	69.12 ± 2.51 71.12 ± 1.87 72.19 ± 2.11 73.20 ± 1.95 73.59 ± 1.26 72.95 ± 1.76 73.99 ± 2.55 70.09 ± 1.53 73.16 ± 2.30 73.15 ± 2.39	
GRACE	95.50±1.30	96.20±0.97	86.03±1.05	86.82±1.01	81.72±2.05	85.30±1.90	74.22±1.56	76.70±1.46	

Model Performance

Model	CoraFull				ogbn-arxiv				
	5 way 3 shot	5 way 5 shot	10 way 3 shot	10 way 5 shot	5 way 3 shot	5 way 5 shot	10 way 3 shot	10 way 5 shot	
DeepWalk node2vec GCN SGC	23.62±3.99 23.75±2.93 34.65±2.76 39.56±3.52	25.93±3.45 25.42±3.61 39.83±2.49 44.53±2.92	15.32 ± 4.12 13.90 ± 3.32 29.23 ± 3.25 35.12 ± 2.71	17.03 ± 3.73 15.21 ± 2.64 34.14 ± 2.15 39.53 ± 3.32	$ \begin{array}{c c} 24.12 \pm 3.16 \\ 25.29 \pm 2.96 \\ 32.26 \pm 2.11 \\ 35.19 \pm 2.76 \end{array} $	26.16 ± 2.95 27.39 ± 2.56 36.29 ± 2.39 39.76 ± 2.95	20.19 ± 2.35 22.99 ± 3.15 30.21 ± 1.95 31.99 ± 2.12	23.76 ± 3.02 25.95 ± 3.12 33.96 ± 1.59 35.22 ± 2.52	
ProtoNet MAML	33.67±2.51 37.12±3.16	36.53±3.76 47.51±3.09	24.90 ± 2.03 26.61 ± 2.19	27.24 ± 2.67 31.60 ± 2.91	39.99±3.28 28.35±1.49	47.31 ± 1.71 29.09 ± 1.62	32.79 ± 2.22 30.19 ± 2.97	37.19 ± 1.92 36.19 ± 2.29	
Meta-GNN GPN G-Meta TENT Meta-GPS X-FNC TEG COSMIC TLP Meta-BP	$\begin{array}{c} 52.23 \pm 2.41 \\ 53.24 \pm 2.33 \\ 57.52 \pm 3.91 \\ 64.80 \pm 4.10 \\ 65.19 \pm 2.35 \\ 69.32 \pm 3.10 \\ 72.14 \pm 1.06 \\ \hline 73.03 \pm 1.78 \\ \hline 66.32 \pm 2.10 \\ 72.90 \pm 1.90 \\ \end{array}$	59.12 ± 2.36 60.31 ± 2.19 62.43 ± 3.11 69.24 ± 4.49 69.25 ± 2.52 71.26 ± 4.19 76.20 ± 1.39 77.24 ± 1.52 71.36 ± 4.49 74.36 ± 2.19	47.21 ± 3.06 50.93 ± 2.30 53.92 ± 2.91 51.73 ± 4.34 61.23 ± 3.11 49.63 ± 4.45 61.03 ± 1.13 65.79 ± 1.36 $\hline 51.73\pm4.34$ 62.35 ± 2.27	53.32 ± 3.15 56.21 ± 2.09 58.10 ± 3.02 56.00 ± 3.53 64.22 ± 2.66 53.00 ± 3.93 65.56 ± 1.03 70.06 ± 1.93 56.00 ± 3.53 67.26 ± 2.59	$\begin{array}{c} 40.14 \pm 1.94 \\ 42.81 \pm 2.34 \\ 40.48 \pm 1.70 \\ 50.26 \pm 1.73 \\ 52.16 \pm 2.01 \\ 52.36 \pm 2.75 \\ \underline{57.35 \pm 1.14} \\ \overline{52.98 \pm 2.19} \\ 41.96 \pm 2.29 \\ 55.12 \pm 4.12 \\ \end{array}$	45.52 ± 1.71 50.50 ± 2.13 47.16 ± 1.73 61.38 ± 1.72 62.55 ± 1.95 63.19 ± 2.22 62.07 ± 1.72 65.42 ± 1.69 52.99 ± 2.05 65.39 ± 4.55	35.19 ± 1.72 37.36 ± 1.99 35.49 ± 2.12 42.19 ± 1.16 42.96 ± 2.02 41.92 ± 2.72 47.41 ± 0.63 43.19 ± 2.72 39.42 ± 2.15 46.25 ± 4.52	39.02 ± 1.99 42.16 ± 2.19 40.95 ± 2.70 46.29 ± 1.29 46.86 ± 2.10 46.10 ± 2.16 51.11 ± 0.73 47.59 ± 2.19 42.62 ± 2.09 50.12 ± 3.39	
GRACE	78.22±1.38	81.60±1.28	70.91±1.08	74.54±0.98	62.31±1.94	68.34±1.73	50.18±1.01	55.07±0.91	

Ablation Study

Model	Cora	CiteSeer	Amazon-Computer	Coauthor-CS	DBLP	CoraFull	ogbn-arxiv
			2 way 1 shot	5 way 3 shot	5 way 5 shot	5 way 3 shot	5 way 3 shot
w/o high w/o low w/o cal	64.01±2.67 63.94±2.79 65.66±2.80	62.26 ± 2.60 59.64 ± 2.75 58.61 ± 2.58	82.89 ± 2.13 90.08 ± 0.79 89.58 ± 1.02	79.05 ± 1.23 80.31 ± 1.14 85.97 ± 1.13	79.35 ± 2.00 85.05 ± 1.83 83.52 ± 1.89	76.73 ± 1.45 77.23 ± 1.49 77.18 ± 1.45	59.32 ± 1.90 61.98 ± 1.92 61.84 ± 1.96
w/o both Ours	$\begin{array}{c c} 60.12 \pm 2.12 \\ 66.48 \pm 2.88 \end{array}$	55.36 ± 2.20 63.90 ± 2.84	65.56 ± 2.60 90.23 ± 0.90	75.88 ± 2.75 86.03 ± 1.05	79.90 ± 2.62 85.30 ± 1.90	53.24 ± 2.33 78.22 ± 1.38	42.81 ± 2.34 62.31 ± 1.94

Thanks for your attention!