LongMagpie: A Self-synthesis Method for Generating Large-scale Long-context Instructions

Chaochen Gao

Motivation

- Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks, with recent advancements significantly extending their context lengths.
- However, *fine-tuning LLMs to leverage long contexts requires access to high-quality long-context instruction data*. Existing methods for creating open-source instruction data face substantial limitations when extended to long contexts.
 - □ (1) Human labor costs are prohibitively high for creating diverse, high-quality long-context instruction data. The annotation difficulty is substantially greater than for short-context data, requiring individuals to read documents spanning thousands of tokens before formulating instructions—a demonstrably challenging task.
 - (2) Existing synthetic approaches, often relying on predefined templates or seed questions, *do not guarantee the diversity needed for effective long* context instruction. While existing projects attempt to broaden seed data diversity, creating large-scale long-context instructions with high quality and diversity remains an expensive and time-consuming process.

Motivation

Key Insight: Auto-Regressive Document-Query Generation

The foundation of LongMagpie is a key observation about aligned long-context LLMs: when provided with a document followed by tokens that typically precede a user query (without the query itself), these models generate contextually relevant queries about that document.

Formally, for an aligned LLM \mathcal{M} with vocabulary \mathcal{V} , we define the document-query generation process as follows: given a document $D = \{d_1, d_2, ..., d_n\} \in \mathcal{V}^n$ and pre-query template $T_{pre} = \{t_1, t_2, ..., t_m\} \in \mathcal{V}^m$ (containing tokens indicating a user or query role, e.g., <|im_start|>user), we provide input $X = D \oplus T_{pre}$, where \oplus denotes sequence concatenation. The model then generates a sequence $Q = \{q_1, q_2, ..., q_k\} \in \mathcal{V}^k$ representing a query related to document D. This process can be described as:

$$p_{\mathcal{M}}(Q \mid D, T_{\text{pre}}) = \prod_{i=1}^{k} p_{\mathcal{M}}(q_i \mid D, T_{\text{pre}}, q_{< i}), \qquad (1)$$

Method

□ Document Preparation

We collect diverse long documents from multiple domains to create a rich dataset for long-context modeling.

■ Query Generation

We generate contextually relevant user queries for each document by prompting an aligned LLM with document text and instruction templates.

□ Response Generation

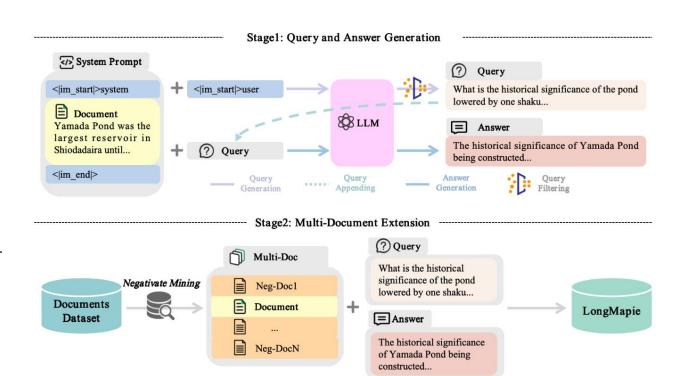
We produce assistant responses for each documentquery pair.

Query Filtering

We filter out invalid queries using rule- and lengthbased heuristics to ensure quality and relevance.

■ Multi-Document Extension

We extend LongMagpie to multi-document settings by combining multiple documents into a single input to enable cross-document reasoning.



□LongMagpie demonstrates better performance on average.

✓ As shown in Table 1, models trained solely on LongMagpie data already set a leading performance on long-context evaluation, topping HELMET (62.10), RULER (91.17), LongBench-v2 (34.4) and the LongAVG score (62.56) within the Long Instruction Data group

Table 1: Main experimental results comparing LongMagpie with other methods on long-context and short-context benchmarks. Best scores in each column are bolded. LongAVG is the average of HELMET, RULER, and Longbench v2, ShortAVG is the average of different short-context tasks.

Dataset		Short Evaluation				
	HELMET	HELMET RULER Longbench v2 Lo		LongAVG	ShortAVG	
	S	Short Instr	uction Data		-	
Tulu	61.93	87.92	28.4	59.42	63.90	
Magpie	60.18	87.06	31.4	59.55	63.32	
UltraChat	60.55	83.85 30.4 58.27		58.27	64.43	
	8]	Long Instru	uction Data			
ChatQA	60.23	89.82	30.8	60.28	63.58	
LongAlign	57.79	86.08	24.5	56.12	60.97	
LongMagpie	62.10	91.17	34.4	62.56	62.37	
	p-Mix: I	ong + Sho	rt Instruction Da	ıta		
ChatQA + UltraChat	60.80	87.42	31.4	59.87	64.38	
LongAlign + UltraChat	60.98	89.49	30.6	60.36	64.17	
LongMagpie + UltraChat	62.11	89.70	33	61.60	64.10	

□Impact of Different Multi-Document Settings.

- ✓ We observe that the multi-document strategy significantly improves performance on long-context tasks (from 60.19 to 62.56). As the value of n increases, the performance on long-context tasks improves and degrades, with the best performance observed when n = 10.
- ✓ We hypothesize that this trend is due to an excessive number of documents increasing the task difficulty beyond the model's learning capacity, thereby leading to a drop in performance.

n	HELMET	RULER	Longbench v2	LongAVG	ShortAVG
0	60.13	89.04	31.4	60.19	63.20
5	61.42	89.91	31.4	60.91	61.98
10	62.10	91.17	34.4	62.56	62.37
20	61.75	91.08	32.8	61.88	62.04
40	62.08	90.77	31.0	61.28	62.37
80	61.15	90.65	31.0	60.93	$\overline{62.13}$

□Impact of Different Data Size and Different Source Model Size.

- ✓ Table 4 demonstrates that *increasing the volume of high-quality long-context instruction data* significantly enhances the model's ability.
- ✓ This superior performance stems from larger models' enhanced ability to model long-context capabilities, which translates to better results when applied to the LongMagpie method.

Table 4: Increasing the volume of training data improves performance on long-context benchmarks.

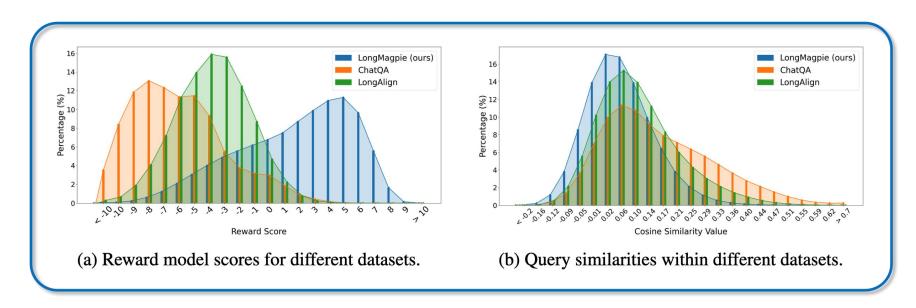
Source Model	Data Volume	HELMET	RULER	Longbench v2	LongAVG	ShortAVG
Qwen-2.5-70B	190k	61.29	90.65	32.6	61.51	62.30
Qwen-2.5-70B	450k	62.10	91.17	34.4	62.56	62.37

Table 5: Using the larger source model improves performance on long-context benchmarks..

Source Model	Data Volume	HELMET	RULER	Longbench v2	LongAVG	ShortAVG
Qwen-2.5-7B	450k	59.28	86.95	32.6	59.61 62.56	62.18
Qwen-2.5-70B	450k	62.10	91.17	34.4		62.37

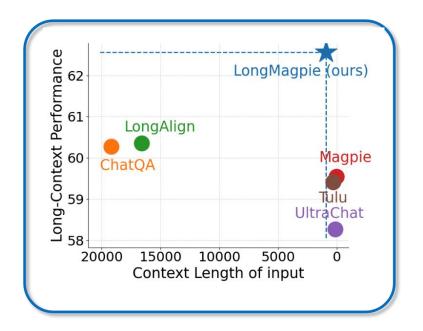
□Analysis of of LongMagpie Queries.

- ✓ Higher Quality of LongMagpie Queries: The overall data quality of LongMagpie is significantly higher than previous methods.
- ✓ Better Diversity of LongMagpie Queries: LongMagpie queries generally exhibit lower similarity among themselves, which also reflects their good diversity.



□Sample Efficiency of LongMagpie.

✓ This efficiency stands in stark contrast to existing methods, which consume 10-13× more tokens per instruction during synthesis yet produce inferior performance outcomes. *LongMagpie's remarkable sample efficiency facilitates greater scalability and diversity.*



Thanks!