

SCALABLE AND ADAPTIVE PREDICTION BANDS WITH KERNEL SUM-OF-SQUARES

Louis Allain^{1,2} Sébastien Da Veiga² Brian Staber¹

¹Safran Tech, Digital Sciences & Technologies, 78114 Magny-Les-Hameaux, France ²Univ Rennes, Ensai, CNRS, CREST - UMR 9194, F-35000 Rennes, France {louis.allain,brian.staber}@safrangroup.com sebastien.da-veiga@ensai.fr

NeurlPS Prediction intervals

- In critical applications, we need confidence intervals around machine learning predictions with coverage guarantees:
 - The guarantee of marginal coverage at level α writes

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1})) \ge 1 - \alpha$$

for the true unknown value of the output Y_{N+1} at an unobserved point X_{N+1}

• Conformal prediction provides a great framework to target this problem

Conformal prediction

- Conformal prediction (CP): a rigorous method to construct prediction intervals with the following properties:
 - ✓ Marginal coverage
 - ✓ Finite sample
 - ✓ Distribution free
 - ✓ Model agnostic
- We focus on split CP, based on two independent datasets, a pre-training \mathcal{D}_n and a calibration \mathcal{D}_m
- CP relies on a score function to evaluate the predictive quality of the model and adjusts the prediction bands accordingly

VeurIPS Score functions

	Absolute errors	Quantile regression ¹	$Normalization^2$
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $	$\max(\widehat{q}_{\mathrm{l}}(X_i) - Y_i, Y_i - \widehat{q}_{\mathrm{u}}(X_i))$	$rac{(Y_i - \widehat{m}(X_i))^2}{\widehat{f}(X_i)}$

We propose here to *learn* a normalized score function in a way that targets both adaptivity and coverage

¹[Romano et al. 2019]

 $^{^2[{\}rm Lei}$ et al. 2014; Johansson et al. 2014; Papadopoulos 2024; Jaber et al. 2024]

- We consider a normalized score: $\frac{(Y-m(X))^2}{f(X)}$, with $f \geq \mathbf{0}$
- As for all learning problems, we must first choose a search space for our functions, here we rely on **kernel methods**
 - m lives in the Reproducible Kernel Hilbert Space (RKHS) \mathcal{H}^m with kernel k^m and lengthscales θ^m
 - f is a kernel sum-of-squares function parameterized by a semi-definite operator \mathcal{A} . This will impose its **positivity**

Learning the score function amounts to simultaneously learning

$$m \in \mathcal{H}^m, f \in \mathcal{S} \circ \mathcal{S}(\mathcal{H}^f) \quad \Leftrightarrow \quad m \in \mathcal{H}^m, \ \mathcal{A} \in \mathcal{S}_+(\mathcal{H}^f)$$

$$\inf_{m \in \mathcal{H}^m, \ A \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|\mathcal{A}\|_* + \lambda_2 \|\mathcal{A}\|_F^2$$
s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, \ i \in [n],$$

$$\|m\|_{\mathcal{H}^m}^2 \le s$$

$$\inf_{m \in \mathcal{H}^{m}, \ A \in \mathcal{S}_{+}(\mathcal{H}^{f})} \quad \frac{a}{n} \sum_{i=1}^{n} (Y_{i} - m(X_{i}))^{2} + \frac{b}{n} \sum_{i=1}^{n} f_{\mathcal{A}}(X_{i}) + \lambda_{1} \|A\|_{*} + \lambda_{2} \|A\|_{F}^{2}$$
s.t.
$$f_{\mathcal{A}}(X_{i}) \geq (Y_{i} - m(X_{i}))^{2}, \ i \in [n],$$

$$\|m\|_{\mathcal{H}^{m}}^{2} \leq s$$

i) Faithful estimation of the mean function

$$\inf_{m \in \mathcal{H}^{m}, \ \mathcal{A} \in \mathcal{S}_{+}(\mathcal{H}^{f})} \quad \frac{a}{n} \sum_{i=1}^{n} (Y_{i} - m(X_{i}))^{2} + \frac{b}{n} \sum_{i=1}^{n} f_{\mathcal{A}}(X_{i}) + \lambda_{1} \|\mathcal{A}\|_{\star} + \lambda_{2} \|\mathcal{A}\|_{F}^{2}$$
s.t.
$$f_{\mathcal{A}}(X_{i}) \geq (Y_{i} - m(X_{i}))^{2}, \ i \in [n],$$

$$\|m\|_{\mathcal{H}^{m}}^{2} \leq s$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)

$$\inf_{m \in \mathcal{H}^m, \ A \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|A\|_{\star} + \lambda_2 \|A\|_F^2$$
s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, \ i \in [n],$$

$$\|m\|_{\mathcal{H}^m}^2 \le s$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)
- iii) Minimization of the interval mean width

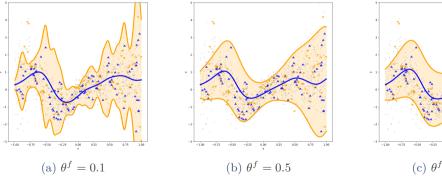
$$\inf_{m \in \mathcal{H}^m, \ A \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|\mathcal{A}\|_{\star} + \lambda_2 \|\mathcal{A}\|_F^2$$
s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, \ i \in [n],$$

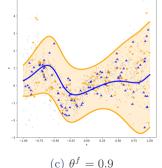
$$\|m\|_{\mathcal{H}^m}^2 \le s$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)
- iii) Minimization of the interval mean width
- iv) Control of the regularity of the bands
 - lasso-type norm $\|A\|_{\star}$
 - ridge-type norm $\|A\|_F$

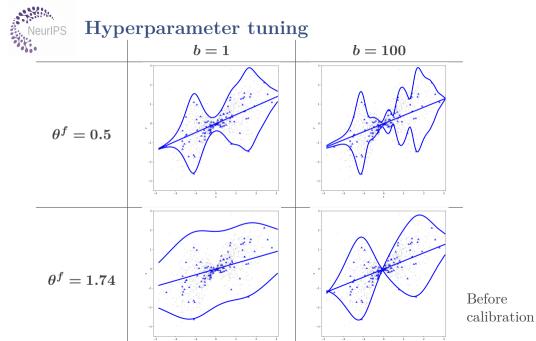
Representer theorem

- We prove a representer theorem for this infinite dimensional problem
- It becomes a Semi-Definite Program (SDP) problem, solvable using off-the-shelves solvers





Note: θ^f is the vector of lengthscales for k^f , the kernel corresponding to \mathcal{H}^f



8/16

Neurlps Hyperparameter tuning

• Perfectly adaptive bands guarantee local coverage

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) \mid X_{N+1} = x) \ge 1 - \alpha$$

- Without hypothesis on the data, satisfying this local coverage leads to infinitely wide prediction bands [Vovk 2012; Barber et al. 2021]
- We can relax the local coverage by considering X in a small neighbourhood ω_X , such that $\forall x \in \mathcal{X}, \ \mathbb{P}(x \in \omega_X) \geq \delta$:

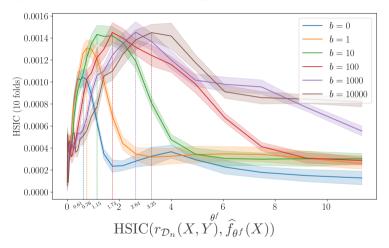
$$p_{\mathcal{D}_N} := \mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) | X_{N+1} \in \omega_X) \ge 1 - \alpha$$

Neurlps Hyperparameter tuning

• Using information theory results and recent inequalities result between the TV distance and the MMD, we prove a new bound

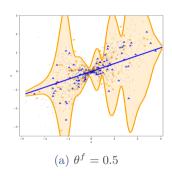
$$p_{\mathcal{D}_N} \ge 1 - \alpha - \frac{1}{\delta} \sqrt{1 - \frac{\alpha_1}{1 - \alpha_2 \text{HSIC}(r_{\mathcal{D}_n}(X_{N+1}, Y_{N+1}), \hat{f}_{\theta^f}(X_{N+1}))}}$$

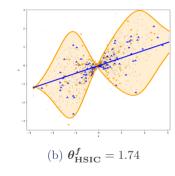
Hyperparameter tuning

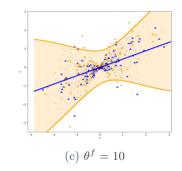


Maximizing this HSIC, i.e. the dependence between the residuals and the interval widths, allows to target better local coverage

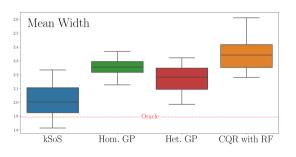
Analytical case





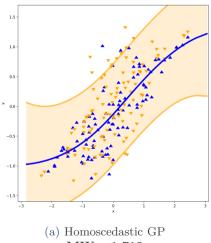


Mean width metric

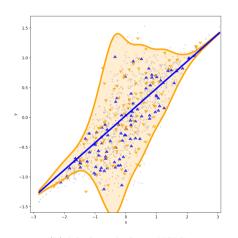


- A common measure for adaptive prediction bands in the literature is mean width, which should be minimized
- kSoS leads to better or as good mean width as competitors
- However, mean width does not always tell the full story

Mean width metric

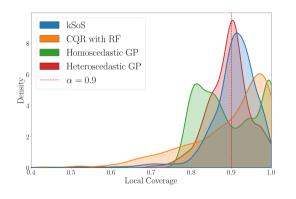


MW = 1.712



(b) kSoS with Opt. HSIC MW = 1.759

Local coverage metric



- The best measure of adaptivity is local coverage
- The target for local coverage is a Dirac at $1 \alpha = 0.9$
- kSoS leads to better concentrated local coverage in general

Contributions

- Learning setting for a score function in the context of split CP
- Representer theorem to make the problem tractable
- Dual formulation with AGD to handle thousands of points
- Brand new adaptivity measure based on HSIC, that allows to automatically choose hyperparameters of the model