

Generative Graph Pattern Machine

Zehong Wang, Zheyuan Zhang, Tianyi Ma,

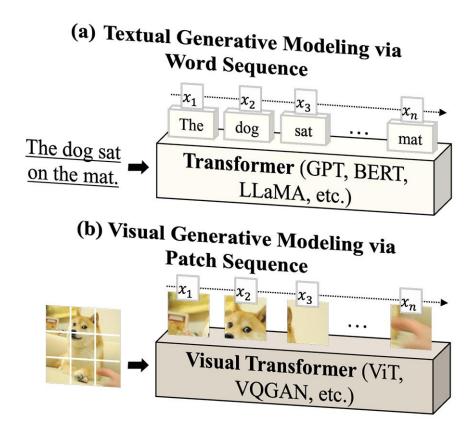
Chuxu Zhang, Yanfang Ye

University of Notre Dame, University of Connecticut

Speaker: Zehong Wang

What Are Vocabularies in Text and Image?

- Text vocabulary preserves textual tokens
- Image vocabulary preserves image concepts.



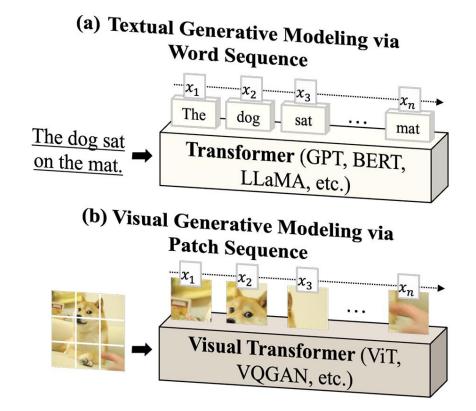
Wang, Z., Zhang, Z., Ma, T., Chawla, N. V., Zhang, C., & Ye, Y. Beyond Message Passing: Neural Graph Pattern Machine. In Forty-second International Conference on Machine Learning.

Extending Vocabulary to Graphs

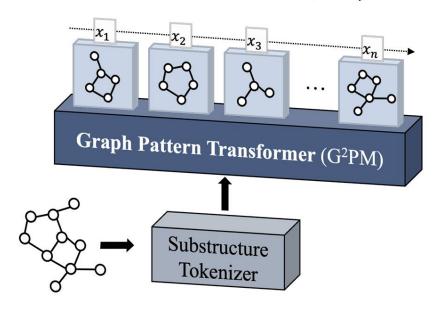
Graph vocabulary preserves substructure information.

Social network: triangle structure, star-like structure

S Molecule graph: ring-like structure, like benzene rings.



(c) Graph Generative Modeling via Substructure Sequence (Ours)

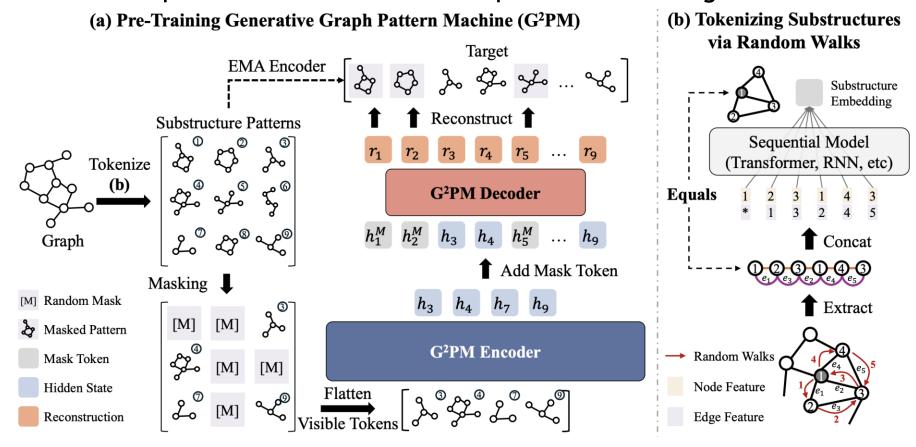


Wang, Z., Zhang, Z., Ma, T., Chawla, N. V., Zhang, C., & Ye, Y. Beyond Message Passing: Neural Graph Pattern Machine. In Forty-second International Conference on Machine Learning.

Generative Graph Pattern Machine

Learning from graph vocabularies

Masked token prediction enables self-supervised learning.



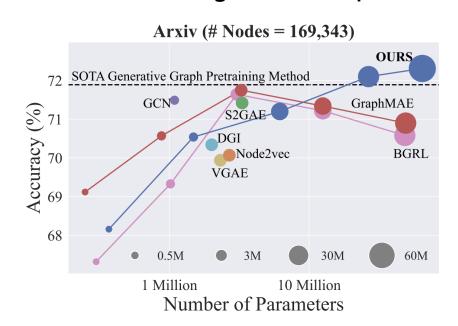
Wang, Z., Zhang, Z., Ma, T., Zhang, C., & Ye, Y. (2025). Scalable Graph Generative Modeling via Substructure Sequences. NeurIPS 25.

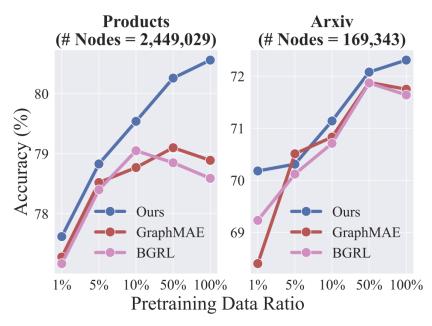
Generative Graph Pattern Machine (G²PM) [NeurlPS'25]

• G²PM Enable Scalability on Graphs

Model Scaling: G²PM achieves scalability up to 60M parameters, whereas existing methods saturate on 3M parameters.

⊘Data Scaling: G²PM shows robust improvements with more training data, whereas existing methods peak at small data ratios.





Wang, Z., Zhang, Z., Ma, T., Zhang, C., & Ye, Y. (2025). Scalable Graph Generative Modeling via Substructure Sequences. NeurIPS 25.

Generative Graph Pattern Machine (G²PM) [NeurIPS'25]

- G²PM Enable Scalability on Graphs
- G²PM Enable Transferability Across Graphs

Table 4: **Cross-domain transferability** performance across diverse source and target datasets. Parentheses indicate the performance gap compared to training from scratch on the target graph.

Source	Arxiv		HIV	
Target	Products	HIV	Arxiv	PCBA
GNN [55, 68] GPM [63]	78.3 (1.2 \(\psi\) 82.0 (0.6 \(\psi\)	70.1 (5.7 \(\psi\) 74.3 (2.7 \(\psi\))	71.1 $(1.0 \downarrow)$ 71.4 $(1.5 \downarrow)$	71.9 (1.6 ↑) 76.4 (1.3 ↑)
BGRL [48] GraphMAE [21]	78.8 (0.2 †) 77.5 (1.4 \$\display\$)	72.5 (3.8 \(\psi\) 74.7 (3.1 \(\psi\)	68.6 (1.9 \(\psi\) 69.9 (1.9 \(\psi\)	72.9 (0.6 \(\)) 73.4 (0.2 \(\))
G^2PM	81.3 (0.7 †)	76.8 (1.9 ↓)	72.6 (0.3 †)	77.9 (2.3 ↑)

Table 5: Cross-domain pre-training results on text-attributed graphs processed by [32], where node features are aligned via a textual encoder.

Pretrain	Arxiv + FB15K237 + ChemBL			
Downstream	Arxiv	FB15K237	HIV	
	(Academia)	(Knowledge Graph)	(Molecule)	
BGRL [48]	70.8 ± 0.2	86.5 ± 0.3	68.5 ± 1.6 64.1 ± 0.5	
GraphMAE [21]	70.3 ± 0.3	87.8 ± 0.4		
OFA [32]	71.4 ± 0.3	84.7 ± 1.3	72.0 ± 1.6	
GFT [60]	71.9 ± 0.1	89.3 ± 0.2	72.3 ± 2.0	
G^2PM	72.5 ± 0.1	88.9 ± 0.5	74.1 ± 1.3	