

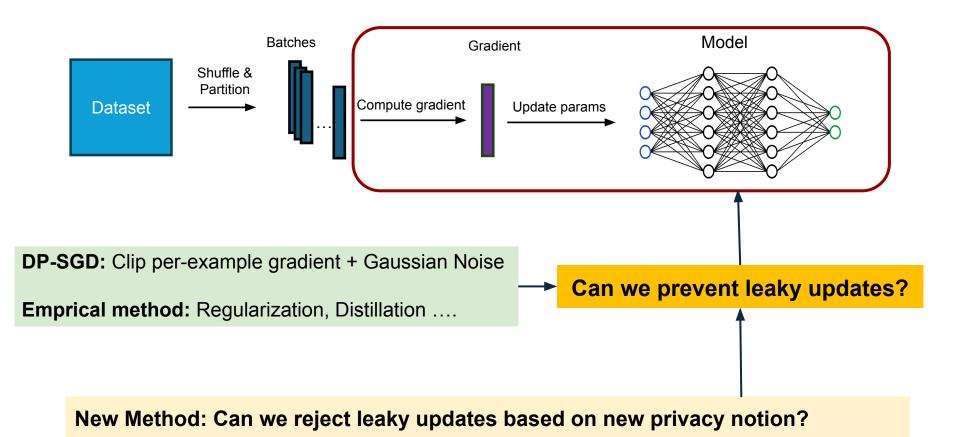
# Deep Learning with Plausible Deniability

**Wenxuan Bao**<sup>1</sup>, Shan Jin<sup>2</sup>, Hadi Abdullah<sup>2</sup>, Anderson C. A. Nascimento<sup>2</sup>, Vincent Bindschaedler<sup>1</sup>, Yiwei Cai<sup>2</sup>



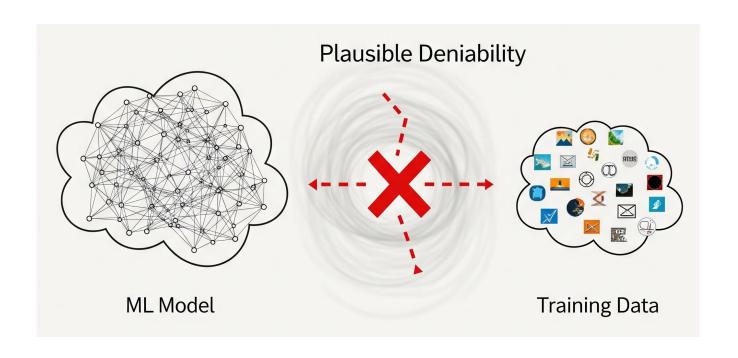


### This Paper

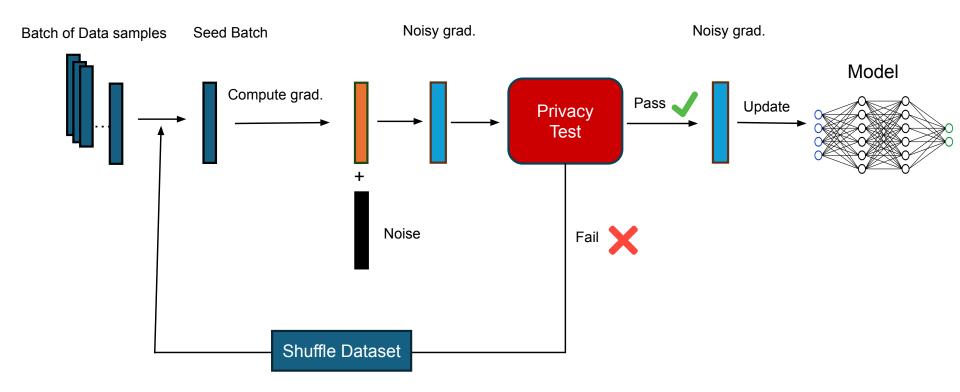


## **Plausible Deniability**

• Ensure each gradient update could be due to **many** batches.



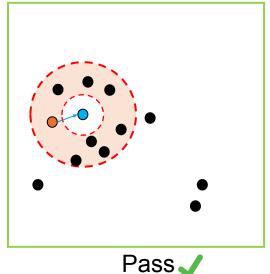
# Plausible Deniability-SGD

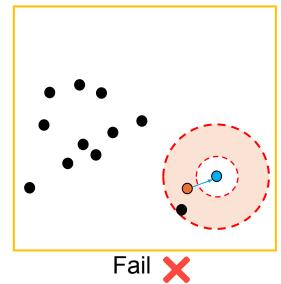


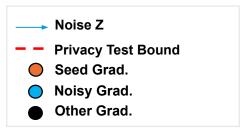
# **Privacy Test**

Are there  $\geq T$  other batches in the training set with similar gradients?

$$lpha^{-1} \ \leq \ rac{p( ilde{g}_s - g_s)}{p( ilde{g}_s - g_i)} \ \leq \ lpha \quad ext{for at least } T \, ext{batches } B_i$$







### PD-SGD vs DP-SGD

#### **Differences:**

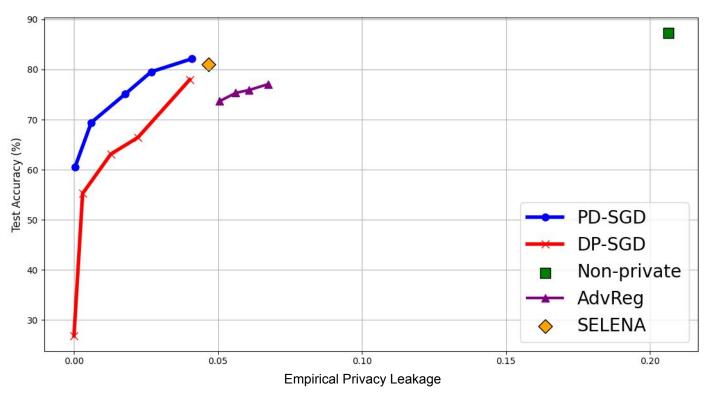
|                          | DP-SGD       | PD-SGD |
|--------------------------|--------------|--------|
| Unit of Protection       | Example      | Batch  |
| Per-Example Clipping     | Yes          | No     |
| Supported Loss Functions | Decomposable | Any    |

#### Similarities:

- Bound Membership Inference Attack Advantage
- PD-SGD can achieve  $(\varepsilon, \delta)$ -DP with privacy test randomization

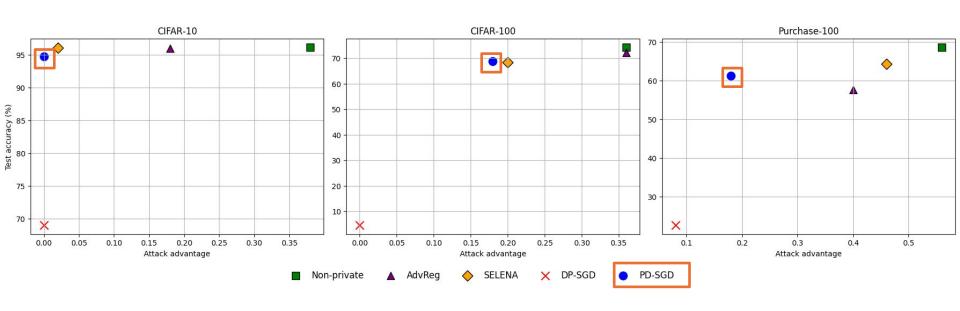
## **Experiments Results**

### **Better** privacy-utility trade-off



### **Experiments Results**

Better privacy-utility trade-off on different datasets with different model architectures.



## **Takeaways**

- Introduces a novel privacy notion for private training of ML models based on plausible deniability and propose an algorithm (PD-SGD) for it
- Achieves better privacy-utility trade-off than other existing defenses

