

Mitigating Hallucination Through Theory-Consistent Symmetric Multimodal Preference Optimization

Wenqi Liu¹, Xuemeng Song², Jiaxi Li³, Yinwei Wei¹, Na Zheng⁴, Jianhua Yin¹, Liqiang Nie⁵

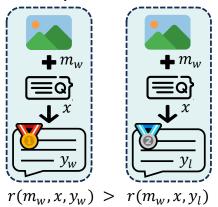
¹Shandong University, ²Southern University of Science and Technology, ³University of Georgia, ⁴National University of Singapore, ⁵Harbin Institute of Technology (Shenzhen)

The Challenge: MLLM Hallucination

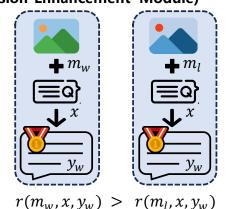
Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities but often generate outputs that fail to align with the provided image, a phenomenon referred to as hallucination.

Direct Preference Optimization (DPO) is a crucial technique for aligning models and mitigating this issue. To better adapt DPO to multimodal tasks, researchers have extended the original **response-oriented preference learning** to incorporate **vision-oriented preference learning**. However, existing approaches to vision-oriented preference learning still suffer from significant unresolved challenges.

Response-Oriented Preference Learning (Base Module)



Vision-Oriented Preference Learning (**Vision-Enhancement Module**)



Core Limitations of Existing Methods

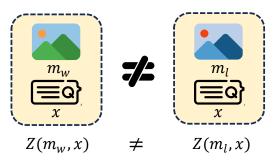
Non-Rigorous Objective

Existing vision-oriented DPO methods compare different images $(m_w \text{ vs. } m_l)$ but fail to account for canceling out the partition function Z(m,x). This approach is theoretically flawed as it deviates from the standard DPO derivation.

Indirect Supervision

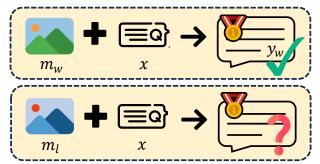
Existing vision-oriented DPO methods contrast images $(m_w \text{ vs.} m_l)$ while relying on the same response (y_w) . This contradicts the fundamental design of DPO, which is explicitly intended to learn from preferences between two responses $(y_w \text{ vs.} y_l)$.

Limitation1: Non-Rigorous Objective Function



 Intractable partition functions cannot be eliminated due to the difference in the image input.

Limitation2: Indirect Preference Supervision



 Only utilize contrastive images as indirect preference supervision, fail to explore the preferred responses of these images.

SymMPO

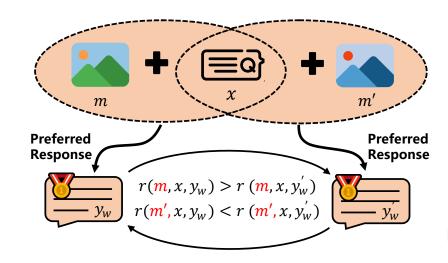
We propose **Sym**metric **M**ultimodal **P**reference **O**ptimization **(SymMPO)**.

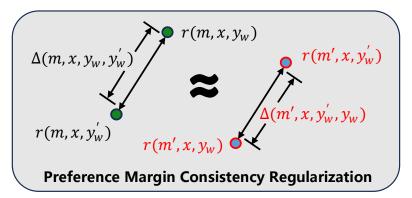
Instead of contrasting images, SymMPO contrasts their own preferred responses within a symmetric framework.

- For input (m, x), the preference is $y_w > y'_w$.
- For input (m', x), the preference is $y'_w > y_w$.

This approach is both **theory-consistent** (correctly cancels the partition functions) and leverages **direct preference supervision**.

Symmetric Multimodal Preference Optimization (SymMPO)





Objective Function

The full loss function integrates standard DPO with our novel symmetric losses, designed to enhance multimodal alignment:

$$\mathcal{L}_{SymMPO} = \mathcal{L}_{DPO_m} + \lambda \mathcal{L}_{Pair} + \gamma \mathcal{L}_{Margin} + \eta \mathcal{L}_{AncPO}$$

• \mathcal{L}_{DPO_m} (Standard DPO): Aligns response quality using (preferred, less-preferred) pairs.

$$\mathcal{L}_{DPO_m} = -\mathbb{E}_{(x, m, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | m, x)}{\pi_{ref}(y_w | m, x)} - \beta \log \frac{\pi_{\theta}(y_l | m, x)}{\pi_{ref}(y_l | m, x)} \right) \right]$$

• \mathcal{L}_{Pair} (Symmetric Loss): Serves as the core vision-oriented loss, enforcing symmetric in preference.

$$\mathcal{L}_{Pair} = -\mathbb{E}_{(x,m,m',y_w,y_w')\sim\mathcal{D}} \left[\log \sigma \left(r(m,x,y_w) - r(m,x,y_w') \right) + \log \sigma \left(r(m',x,y_w') - r(m',x,y_w) \right) \right]$$

$$= -\mathbb{E}_{(x,m,m',y_w,y_w')\sim\mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w|m,x)}{\pi_{ref}(y_w|m,x)} - \beta \log \frac{\pi_{\theta}(y_w'|m,x)}{\pi_{ref}(y_w'|m,x)} \right) + \log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w'|m',x)}{\pi_{ref}(y_w'|m',x)} - \beta \log \frac{\pi_{\theta}(y_w|m',x)}{\pi_{ref}(y_w|m',x)} \right) \right].$$

Objective Function

The full loss function integrates standard DPO with our novel symmetric losses, designed to enhance multimodal alignment:

$$\mathcal{L}_{SymMPO} = \mathcal{L}_{DPO_m} + \lambda \mathcal{L}_{Pair} + \gamma \mathcal{L}_{Margin} + \eta \mathcal{L}_{AncPO}$$

• \mathcal{L}_{Margin} (Margin Consistency): Ensures preference gap remain consistent in both directions.

$$\begin{cases} \mathcal{L}_{Margin} = \mathbb{E}_{(x,m,m',y_w,y_w') \sim \mathcal{D}} \Big(\Delta(m,x,y_w,y_w') - \Delta(m',x,y_w',y_w) \Big)^2, \\ \Delta(m,x,y_w,y_w') = r(m,x,y_w) - r(m,x,y_w') = \log \frac{\pi_{\theta}(y_w|m,x)}{\pi_{ref}(y_w|m,x)} - \log \frac{\pi_{\theta}(y_w'|m,x)}{\pi_{ref}(y_w'|m,x)}, \end{cases}$$

• \mathcal{L}_{AncPO} (Anchored Loss): Stabilizes training by anchoring the likelihood of preferred response.

$$\mathcal{L}_{AncPO} = -\mathbb{E}_{(x,m,m',y_w,y_w')\sim\mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w|m,x)}{\pi_{ref}(y_w|m,x)} - \delta \right) + \log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w'|m',x)}{\pi_{ref}(y_w'|m',x)} - \delta \right) \right]$$

Experiment

Table 1: Main experimental results. The best and second-best results under the same experiment setting are highlighted in boldface and underlined, respectively.

Model	Data Size	Feedback	HallusionBench			Object-HalBench		MMHal-Bench		AMBER		MMStar
Model	Data Size		qAcc↑	fAcc↑	aAcc↑	Resp.↓	Ment.↓	Score↑	Hall↓	Acc↑	F1↑	Overall↑
Muffin-13B [37]	Х	Х	6.15	12.71	41.89	53.0	24.3	2.06	66.7	74.2	80.0	25.4
+RLHF-V [10]	1.4k	Human	9.67	13.87	45.79	8.5	4.9	2.60	56.2	82.0	86.7	31.0
LLaVA-1.5-7B [3]	Х	Х	3.95	11.56	41.71	56.5	27.9	2.26	56.2	71.8	74.5	33.3
+LLaVA-RLHF [14]	122k	Self-Reward	5.49	12.13	38.26	55.4	27.3	2.00	66.7	68.7	74.7	31.4
+POVID [38]	17k	GPT-4V	7.03	9.53	43.31	35.9	17.3	2.28	56.2	78.6	81.9	34.4
+HALVA [39]	21.5k	GPT-4V	5.49	11.27	42.42	49.1	24.6	2.14	60.4	78.0	83.5	32.3
+HA-DPO [13]	6k	GPT-4	5.49	11.56	42.16	44.9	21.8	1.97	61.5	74.2	78.0	32.6
+RLAIF-V [11]	74.8k	LLaVA-Next	5.93	5.49	36.75	9.9	4.9	3.04	39.6	72.7	84.4	34.6
+TPO [26]	21.4k	LLaVA-Next	7.03	11.27	41.62	5.0	4.7	2.76	42.7	82.2	87.2	34.2
+OPA-DPO [19]	4.8k	LLaVA-Next	6.37	11.84	42.69	6.1	3.7	2.83	46.9	81.3	85.6	33.1
+DPO [9]	21.4k	DeepSeek-V3	7.25	7.80	40.21	12.9	8.8	2.44	49.0	71.3	82.6	33.4
+mDPO [15]	21.4k	DeepSeek-V3	6.81	9.53	42.78	19.9	10.1	2.71	50.0	80.6	86.3	34.2
+SymMPO (Ours)	21.4k	DeepSeek-V3	7.25	13.58	44.28	<u>19.5</u>	<u>9.7</u>	2.89	42.7	82.6	87.7	34.8
LLaVA-1.5-13B [3]	Х	Х	6.59	9.53	43.48	51.2	25.1	2.16	59.4	71.3	73.2	33.1
+LLaVA-RLHF [14]	122k	Self-Reward	8.57	10.11	43.48	45.3	21.5	2.15	66.7	79.7	83.9	33.5
+HALVA [39]	21.5k	GPT-4V	8.79	10.11	42.24	47.0	22.9	2.30	57.3	82.9	86.5	33.1
+HSA-DPO [40]	8k	GPT-4/4V	6.15	8.95	41.62	5.4	2.9	2.55	50.0	79.8	82.8	33.7
+OPA-DPO [19]	4.8k	LLaVA-Next	6.81	12.13	42.60	7.7	4.4	3.05	38.5	84.1	87.5	32.3
+DPO [9]	21.4k	DeepSeek-V3	10.32	10.69	39.50	15.4	8.5	2.65	45.8	69.2	84.6	33.0
+mDPO [15]	21.4k	DeepSeek-V3	9.23	10.69	<u>39.85</u>	20.9	10.8	2.93	43.8	83.8	88.8	<u>35.0</u>
+SymMPO (Ours)	21.4k	DeepSeek-V3	10.54	10.98	44.55	<u>20.4</u>	<u>10.0</u>	3.01	39.6	84.9	89.1	35.2

Table 2: Ablation studies with LLaVA-1.5-7B.

Model	HallusionBench			Object-I	HalBench	MMHal	-Bench	AMBER		MMStar	
	qAcc†	fAcc↑	aAcc↑	Resp.↓	Ment.↓	Score↑	Hall↓	Acc↑	F1↑	Overall↑	
SymMPO	7.25	13.58	44.28	19.5	9.7	2.89	42.7	82.6	87.7	34.8	
w /o- \mathcal{L}_{Pair} w /o- \mathcal{L}_{Margin} w /o- \mathcal{L}_{AncPO}	6.59 <u>7.03</u> 6.81	11.84 10.98 11.84	43.22 44.46 40.83	18.1 21.1 21.6	10.6 11.0 11.6	2.53 2.40 2.39	50.0 54.2 59.4	81.7 82.0 79.5	87.1 87.3 87.4	33.8 34.5 36.2	

- SymMPO consistently outperforms both standard DPO and mDPO (the previous vision-oriented method) across key hallucination benchmarks.
- Ablation experiments further validate the effectiveness of each component within SymMPO, proving the effectiveness of individual components.

Experiment

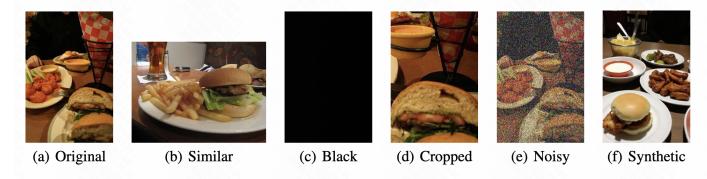


Figure 3: Samples of the original image and its related contrastive images.

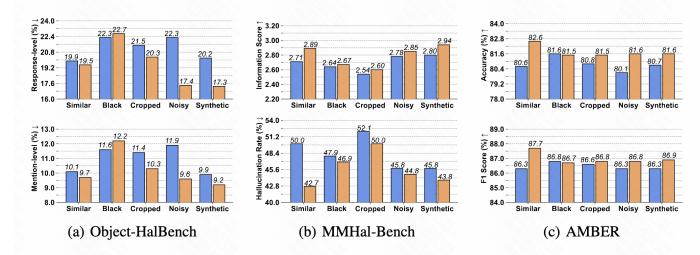


Figure 4: Results of SymMPO and mDPO using different types of contrastive images (†/\psi: higher/lower is better). Orange represents SymMPO, and blue represents mDPO.

- To investigate the impact of different types of contrastive image pairs on the optimization performance of SymMPO, we constructed various types of contrastive image pairs and conducted experiments using SymMPO.
- Based on the experimental results, we analyzed how different image pair data influence the symmetric preference optimization effectiveness of SymMPO.

Thank You

