

EUGens: Efficient, Unified, and General Dense Layers

Sang Min Kim*, Byeongchan Kim*, Arijit Sehanobish*, Somnath Basu Roy Chowdhury*, Rahul Kidambi*, Dongseok Shim, Avinava Dubey*, Snigdha Chaturvedi, Min-hwan Oh, Krzysztof Choromanski*

> * Equal Contribution Correspondence to arijit.sehanobish1@gmail.com

Feed Forward Layer (FFL)

 $\mathbf{x} \mapsto f(\mathbf{W}\mathbf{x} + \mathbf{b}), \ x \in \mathbb{R}^d, \ \mathbf{W} \in \mathbb{R}^{l \times d}, \ \mathbf{b} \in \mathbb{R}^l(\text{bias}), \ f : \mathbb{R} \to \mathbb{R} \ (\text{ activation function})$

Feed Forward Layer (FFL)

$$\mathbf{x} \mapsto f(\mathbf{W}\mathbf{x} + \mathbf{b}), \ x \in \mathbb{R}^d, \ \mathbf{W} \in \mathbb{R}^{l \times d}, \ \mathbf{b} \in \mathbb{R}^l(\text{bias}), \ f : \mathbb{R} \to \mathbb{R} \ (\text{ activation function})$$

• EUGen Layers to approximate FFLs :

$$ext{EUGen}^k(\mathbf{W},\mathbf{x}) = \left\langle \Psi(ext{concat}(\prod_{j=1}^i \mathbf{G}^i_j \mathbf{W}^+)_{i=0,...,k}), \Phi(ext{concat}(\prod_{j=1}^i \mathbf{G}^i_j \mathbf{x}^+)_{i=0,...,k})
ight
angle$$

Feed Forward Layer (FFL)

$$\mathbf{x} \mapsto f(\mathbf{W}\mathbf{x} + \mathbf{b}), \ x \in \mathbb{R}^d, \ \mathbf{W} \in \mathbb{R}^{l \times d}, \ \mathbf{b} \in \mathbb{R}^l(\text{bias}), \ f : \mathbb{R} \to \mathbb{R} \ (\text{ activation function})$$

• EUGen Layers to approximate FFLs :

$$\mathrm{EUGen}^k(\mathbf{W},\mathbf{x}) = \left\langle \Psi(\mathrm{concat}(\prod_{j=1}^i \mathbf{G}^i_j \mathbf{W}^+)_{i=0,...,k}), \Phi(\mathrm{concat}(\prod_{j=1}^i \mathbf{G}^i_j \mathbf{x}^+)_{i=0,...,k})
ight
angle$$

- ullet $\Phi,\Psi:\mathbb{C} o \mathbb{R}$, $oldsymbol{G}$: random Gaussian matrices
- $\bullet \qquad \mathbf{W}^+ := \operatorname{concat}(\mathbf{W}, 1), \ \ \mathbf{x}^+ := \operatorname{concat}(\mathbf{x}, ||\mathbf{x}||_2)$

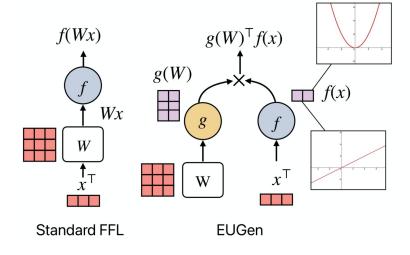
Feed Forward Layer (FFL)

$$\mathbf{x} \mapsto f(\mathbf{W}\mathbf{x} + \mathbf{b}), \ x \in \mathbb{R}^d, \ \mathbf{W} \in \mathbb{R}^{l \times d}, \ \mathbf{b} \in \mathbb{R}^l(\text{bias}), \ f : \mathbb{R} \to \mathbb{R} \ (\text{ activation function})$$

EUGen Layers to approximate FFLs :

$$\mathrm{Eug}(\mathbf{W},\mathbf{x}) := \langle \Psi(\mathbf{W}), \Phi(\mathbf{x})
angle$$

 Main idea: nonlinear calculations are replaced with the simple linear (dot-product) kernel, but via the nonlinear maps Ψ and Φ.



Some Theoretical Properties of EUGens (Unbiased Estimation)

Theorem: EUGens can unbiasedly approximate FFLs with polynomial activations f.

Let
$$f$$
 be $f(x) \coloneqq \sum_{i=0}^k a_i x^i$, then choosing $\mathbf{G}^i_j(\cdot,\cdot) \sim \frac{1}{\sigma_{i,j} m^{\frac{1}{2i}} |a_i|^{\frac{1}{2i}} \xi_i(2i)} \mathcal{D}^i_j$, where

- \triangleright is a zero-mean distribution
- $\bullet \qquad \xi_i^t(t) = \mathrm{sgn}(a_i).$
- $\Phi(x) = \Psi(x) = x$ are identity mappings.

Then $\mathbb{E}\left[\mathrm{EUGen}(\mathbf{W},\mathbf{x})\right] = f(\mathbf{W}\mathbf{x})$

Variance of our Estimator

Theorem : The variance of the estimator $Z = \widehat{\mathrm{FFL}}(\mathbf{W}, \mathbf{x})[u]$ of $\mathrm{FFL}(\mathbf{W}, \mathbf{x})[u]$ for u th row is given by

$$ext{Var}(Z) = rac{1}{m} \sum_{i=0}^k ((2 (\mathbf{w}(u)^ op \mathbf{x})^2 + \|\mathbf{w}(u)\|_2^2 \|\mathbf{x}\|_2^2 + (au_{i,j} - 3) \sum_{s=1}^d \mathbf{w}(u)_s^2 x_s^2)^i -
ho_i) a_i^2.$$

Where

- $\mathbf{w}(\mathbf{u}) := \mathbf{u} \text{ th row of } \mathbf{w}$
- $\varrho_i := (\mathbf{w}(\mathbf{u})^\mathsf{T} \mathbf{x})^{2i}$
- $\mathbf{\tau}_{i,j}$ is the 4th moment of the distribution \mathcal{D}_{j}^{i}

Variance of our Estimator

Theorem : The variance of the estimator $Z = \widehat{\mathrm{FFL}}(\mathbf{W}, \mathbf{x})[u]$ of $\mathrm{FFL}(\mathbf{W}, \mathbf{x})[u]$ for u th row is given by

$$ext{Var}(Z) = rac{1}{m} \sum_{i=0}^k ((2(\mathbf{w}(u)^ op \mathbf{x})^2 + \|\mathbf{w}(u)\|_2^2 \|\mathbf{x}\|_2^2 + (au_{i,j} - 3) \sum_{s=1}^d \mathbf{w}(u)_s^2 x_s^2)^i -
ho_i) a_i^2.$$

Where

- $\mathbf{w}(\mathbf{u}) := \mathbf{u} \text{ th row of } \mathbf{w}$
- $\varrho_i := (\mathbf{w}(\mathbf{u})^\mathsf{T} \mathbf{x})^{2i}$
- ullet $oldsymbol{ au}_{i,j}$ is the 4th moment of the distribution $\mathcal{D}^i_{\ j}$

Key Takeaway: Variance scales as O(1/m) so variance converges to 0 as m $\rightarrow \infty$

Concentration Results for EUGens

Theorem: Under some mild assumptions,

$$\mathbb{P}[|\widehat{ ext{FFL}}(\mathbf{W},\mathbf{x})[u] - ext{FFL}(\mathbf{W},\mathbf{x})[u]| \geq \epsilon] \leq h(\epsilon) \overset{ ext{def}}{=} 2 \exp\left(-rac{m\epsilon^2}{2(\eta_1 + \eta_2)^2 k^2}
ight)$$

Where

• η_1 and η_2 are explicit constants.

• *k* := degree of polynomial activation

Concentration Results for EUGens

Theorem: Under some mild assumptions,

$$\mathbb{P}[|\widehat{ ext{FFL}}(\mathbf{W},\mathbf{x})[u] - ext{FFL}(\mathbf{W},\mathbf{x})[u]| \geq \epsilon] \leq h(\epsilon) \overset{ ext{def}}{=} 2 \exp\left(-rac{m\epsilon^2}{2(\eta_1 + \eta_2)^2 k^2}
ight)$$

Where

• η_1 and η_2 are explicit constants.

• *k* := degree of polynomial activation

Key Takeaway : Probability that EUGen is larger than the approximating FFL can be arbitrary small if *m* is large.

Extending our results for general activation functions

Theorem: For any k, there exists a k-order EUGen layer, such that

$$\mathbb{P}(|\widehat{\mathrm{FFL}}(\mathbf{W},\mathbf{x})[u] - \mathrm{FFL}(\mathbf{W},\mathbf{x})[u]| \geq \epsilon + C\omega(\frac{1}{\sqrt{k}})) \leq \min(\frac{\mathrm{Var}\left(\widehat{\mathrm{FFL}}(\mathbf{W},\mathbf{x})[u]\right)}{\epsilon^2},\ h(\epsilon))$$

Where

- $\bullet \quad \omega(x) = \sup_{|t_1-t_2| \leq x} |f(t_1)-f(t_2)|$
- *C* is some constant.

Extending our results for general activation functions

Theorem: For any k, there exists a k-order EUGen layer, such that

$$\mathbb{P}(|\widehat{\mathrm{FFL}}(\mathbf{W},\mathbf{x})[u] - \mathrm{FFL}(\mathbf{W},\mathbf{x})[u]| \geq \epsilon + C\omega(\frac{1}{\sqrt{k}})) \leq \min(\frac{\mathrm{Var}\left(\widehat{\mathrm{FFL}}(\mathbf{W},\mathbf{x})[u]\right)}{\epsilon^2},\ h(\epsilon))$$

Where

$$oldsymbol{\omega}(x) = \sup_{|t_1-t_2| \leq x} |f(t_1)-f(t_2)|.$$

• C is some constant.

Key Takeaway : Since Var scales as O(1/m), and $h(\epsilon)$ exponentially small in m, choosing $m >> 1/\epsilon^2$, can make RHS arbitrarily small.

Summarizing our Theoretical Contributions

- We have proven the first unbiasedness results for any polynomial activation functions.
- Previous results are known for polynomials with positive coefficients.
- Variance of estimator decreases as the number of random features increase.
- Leveraging the fact that polynomials can approximate any continuous functions, we show that EUGens can be used to approximate arbitrary FFLs.
- Finally non-linearity in EUGen is introduced by Φ or Ψ or k > 1.

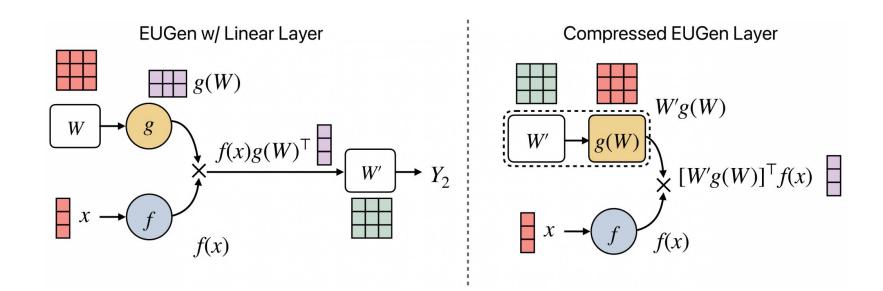
Some Practical Benefits of EUGens

• **Network Compression**: Instead of transforming layer parameters with Ψ , one can directly learn vectors $\Psi(w)$. Then the number of trainable parameters becomes $O(m\ell)$ rather than $O(\ell d)$ for m << d, reducing the parameter count.

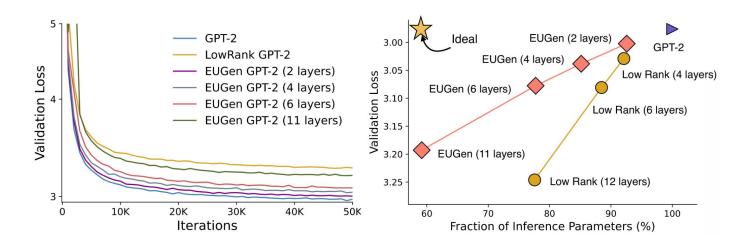
- Computational Savings: the overall time complexity (given pre-computed embeddings $\Psi(w)$ is sub-quadratic in layers' dimensionalities.
- Compression during inference: a two-tower representation can be used iteratively to compactify multiple FFLs of NNs.

Training without Backpropagation: Possible for certain loss functions and can be used for distillation.

Compression During Inference

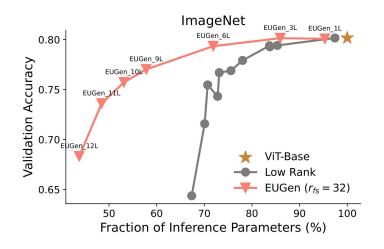


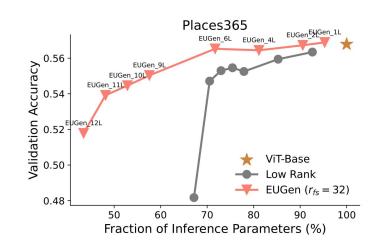
Experiments: Language Modeling (Pretraining)



- Pre-train GPT-2 architecture on 36.8B tokens and replace the FFLs with EUGen layers.
- Compare against GPT-2, low-rank GPT-2, and GPT-2 with varying EUGen layers.
- Observe that EUGens are good approximations of FFLs, achieving similar validation loss to GPT-2.
- More EUGen layers slightly raise loss due to error accumulation.
- Other NLP experiments using BERT and DistilBERT are in our paper.

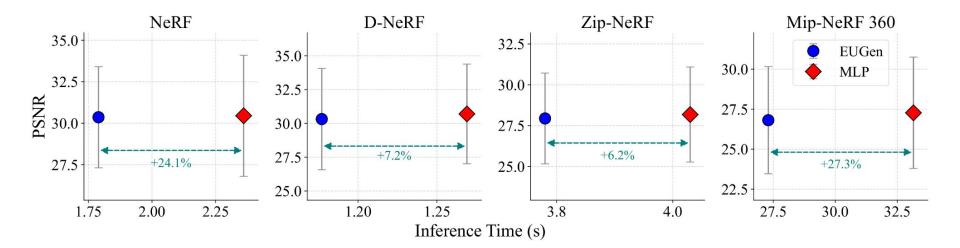
Experiments: Image Classification





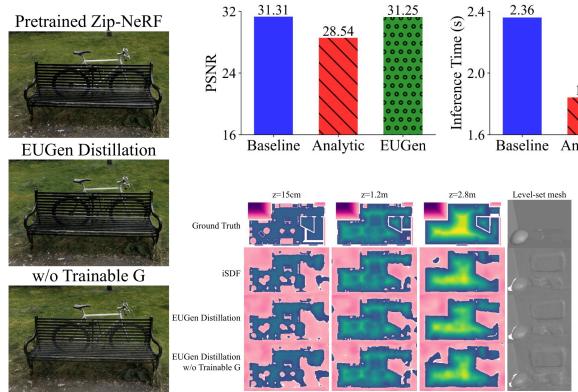
- Systematically replace all the FFLs in ViT with EUGen and evaluate it on the ImageNet and Places365.
- EUGens achieve the best trade-off, matching ViT performance with 30% fewer inference parameters.
- More results on diverse datasets, EfficientViT, and larger models like ViT-L are in our paper.

Experiments: 3D Reconstruction



- Seamlessly inject EUGens into various neural 3D scene reconstruction methods including NeRF, Mip-NeRF 360, Zip-NeRF, and D-NeRF.
- EUGen significantly reduces inference time with virtually no loss in reconstruction quality.
- Also use EUGens into iSDF, achieving **5%** faster training and **23%** faster inference with similar accuracy.

Experiments: Distillation using EUGens



- - Layer-wise Knowledge Distillation (KD) by EUGens by mimicking the outputs of a FFL.
 - Easily slotted in pretrained nets
 - Analytic (w/o trainable G) variants refers to KD performed without backpropagation.
 - We match baseline performance while reducing inference compute.

For more results see our <u>paper</u> and come to our <u>poster session</u>

Thank you!