The Structural Complexity of Matrix-Vector Multiplication

Emile Timothy Anand

Joint work with Jan van den Brand and Rose McCarty

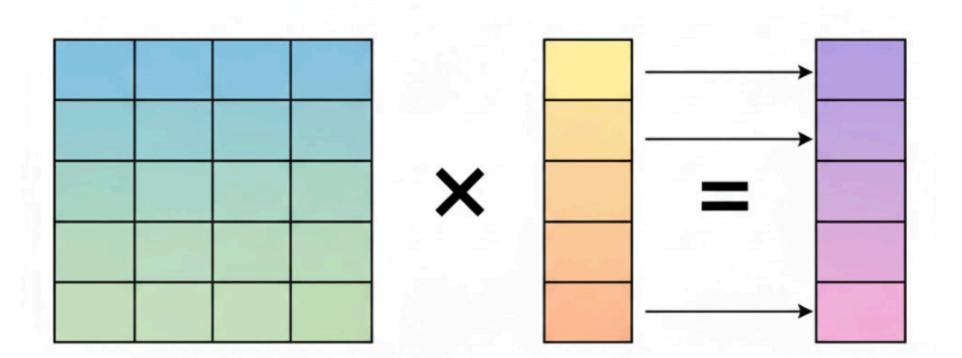
Georgia Institute of Technology

NeurIPS 2025

Problem

Preprocess a given $n \times n$ matrix M

Support queries, that for vector $v \in \mathbb{R}^n$ return the product $\mathbf{M}v$

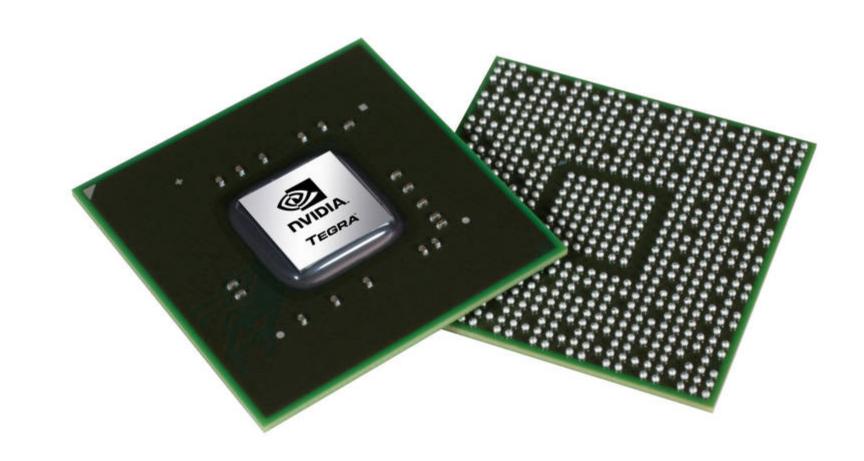


Q: Can we do queries in faster than $O(n^2)$ time?

Why does this matter?

Workhorse of iterative algorithms in machine learning

Used in optimization, computational geometry, dynamic algorithms



The current learning revolution is powered by hardware that does fast matrix-vector products

Any complexity improvement has wide-ranging implications

In Practice

- Sparsity-based heuristics that run in $O(nnz(\mathbf{M}))$ time
- In practice, they run even faster! (AMB+24, BL01, GL03)

In Practice

- Sparsity-based heuristics that run in $O(nnz(\mathbf{M}))$ time
- In practice, they run even faster! (AMB+24, BL01, GL03)

In Theory

- $\Omega(n^2/\log n)$ worst-case time for "generic" algorithms [Clifford, Grønlund, Larsen 15]
- This also holds for the average case [Henzinger, Lincoln, Saha 22]

In Practice

- Sparsity-based heuristics that run in $O(nnz(\mathbf{M}))$ time
- In practice, they run even faster! (AMB+24, BL01, GL03)

In Theory

- $\Omega(n^2/\log n)$ worst-case time for "generic" algorithms [Clifford, Grønlund, Larsen 15]
- This also holds for the average case [Henzinger, Lincoln, Saha 22]

The Online Matrix-Vector (OMv) Conjecture

- Even for Boolean inputs, there is no algorithm that runs in $O(n^{2-\epsilon})$ worst-case time (with $\operatorname{poly}(n)$ -time preprocessing)
- Open theoretical problem for > 10 years! [HKNS15]

Practice:

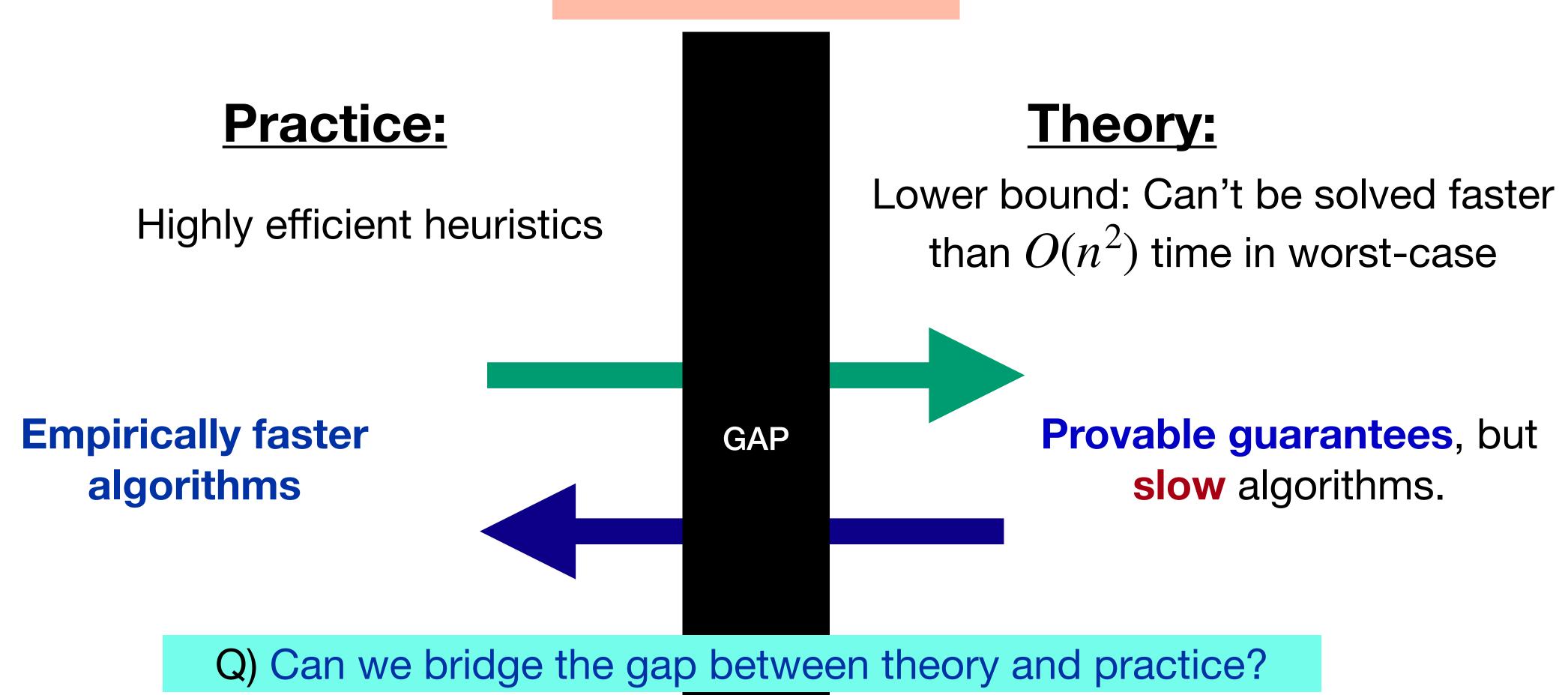
Highly efficient heuristics

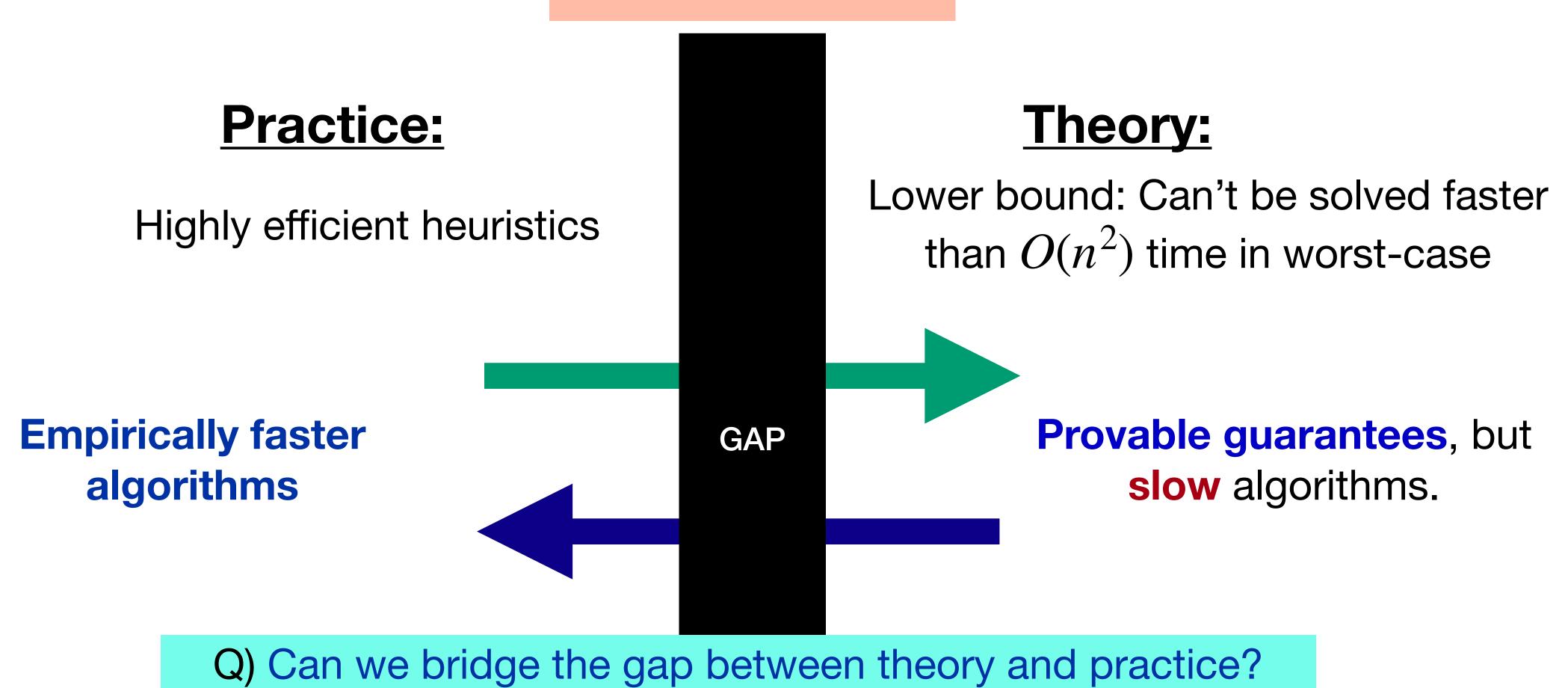
Empirically faster algorithms

Theory:

Lower bound: Can't be solved faster than $O(n^2)$ time in worst-case

Provable guarantees, but slow algorithms.





Q) Can we use this to create even faster matrix-vector algorithms?

Structured Matrices

For certain matrices... Mv can be done faster!

- Sparse matrices
- If the matrix is <u>Vandermonde</u>, <u>Toeplitz</u>, <u>Hankel</u>, or <u>Cauchy</u>
 - convolutional transformation algorithms $\implies O(n \log n)$ multiplication

Structured Matrices

For certain matrices... Mv can be done faster!

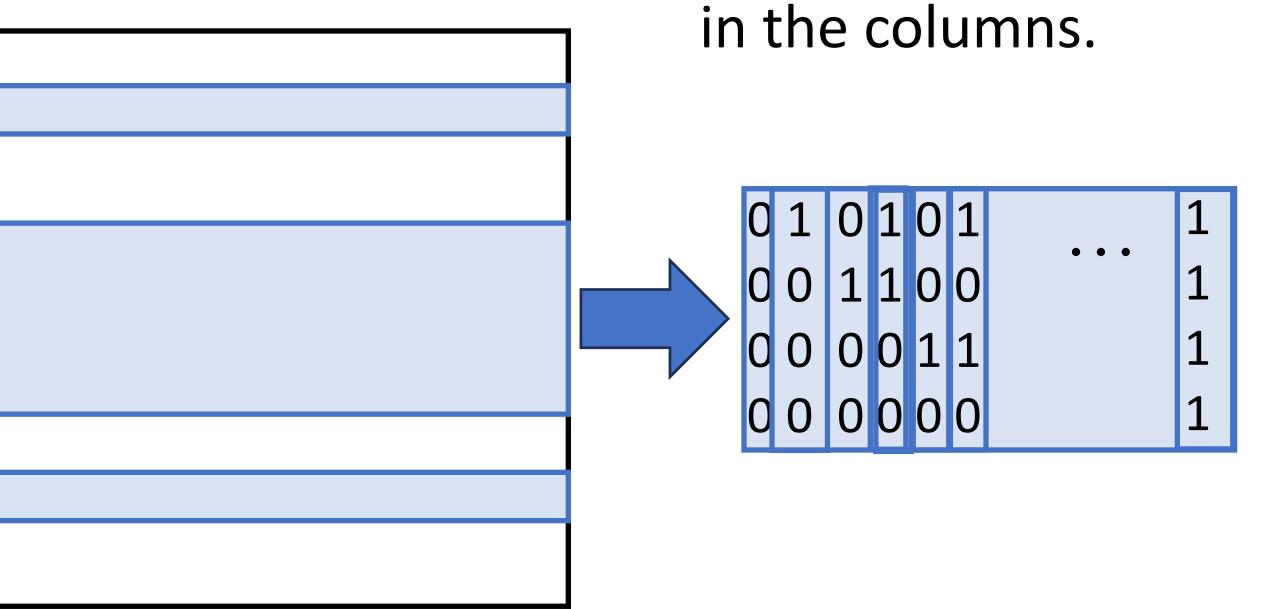
- Sparse matrices
- If the matrix is Vandermonde, Toeplitz, Hankel, or Cauchy
 - convolutional transformation algorithms $\implies O(n \log n)$ multiplication

These previous results hold only for *very specific matrices*...

We need a broader parameterization of structural complexity!

VC-dimension (Vapnik-Chervonenkis)

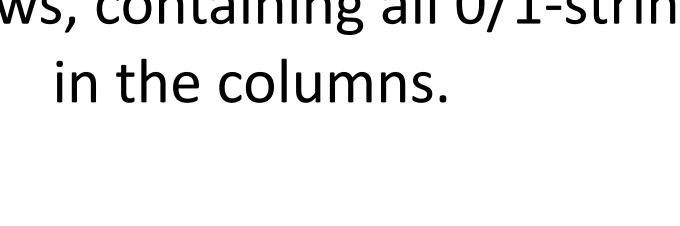
Size of largest set of rows, containing all 0/1-strings

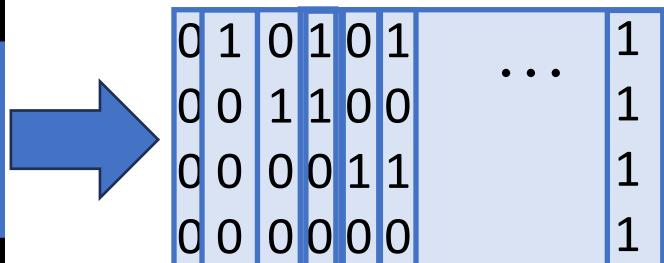


VC-dimension of real-world graphs: 3 – 8.
 [Coudert, Csikós, Ducoffe, Viennot'24]

VC-dimension (Vapnik-Chervonenkis)

Size of largest set of rows, containing all 0/1-strings





Has to exclude some matrices

Closed under row/column deletion

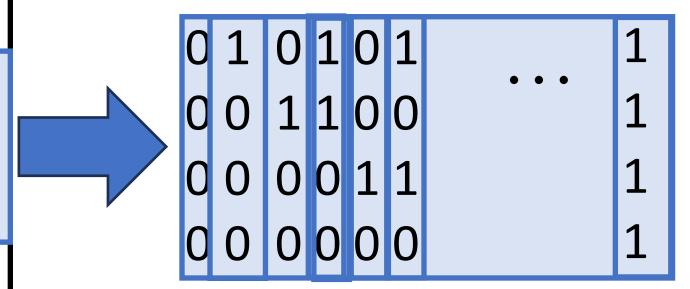
Fact: Any non-trivial hereditary family P of 0/1 matrices has constant VC-dimension.

VC-dimension of real-world graphs: 3 – 8.
 [Coudert, Csikós, Ducoffe, Viennot'24]

VC-dimension (Vapnik-Chervonenkis)

Size of largest set of rows, containing all 0/1-strings

in the columns.



Has to exclude some matrices

Closed under row/column deletion

Fact: Any non-trivial hereditary family P of 0/1 matrices has constant VC-dimension.

We show to solve OMv on P in $O(n^{2-\epsilon})$ time!

Our algorithm does not need to know P or the VC-dimension

VC-dimension of real-world graphs: 3 – 8.
 [Coudert, Csikós, Ducoffe, Viennot'24]

• For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,

Can handle dynamic updates to the matrix in $\tilde{O}(n)$ time

• For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,

Can handle dynamic updates to the matrix in $\tilde{O}(n)$ time

- For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,
- Since real-world matrices have low VC-dimensions, our result explains why
 the problem can be solved so much faster in practice,

Can handle dynamic updates to the matrix in $\tilde{O}(n)$ time

- For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,
- Since real-world matrices have low VC-dimensions, our result explains why
 the problem can be solved so much faster in practice,
- Our result extends to rectangular matrices, and the class of non-Boolean matrices with the analogous Pollard pseudo dimension measure,

Can handle dynamic updates to the matrix in $\tilde{O}(n)$ time

- For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,
- Since real-world matrices have low VC-dimensions, our result explains why
 the problem can be solved so much faster in practice,
- Our result extends to rectangular matrices, and the class of non-Boolean matrices with the analogous Pollard pseudo dimension measure,
- We also give an algorithm to handle the case where ${\bf M}$ may have VC-dimension 2^d but ${\bf M}^{\sf T}$ has lower VC-dimension in $\tilde{O}(n^{2-1/d})$ query time

Can handle dynamic updates to the matrix in $\tilde{O}(n)$ time

- For matrices with VC-dimension d, the matrix-vector multiplication problem can be solved with $\tilde{O}(n^2)$ preprocessing and $\tilde{O}(n^{2-1/d})$ query time,
- Since real-world matrices have low VC-dimensions, our result explains why
 the problem can be solved so much faster in practice,
- Our result extends to rectangular matrices, and the class of non-Boolean matrices with the analogous Pollard pseudo dimension measure,
- We also give an algorithm to handle the case where ${\bf M}$ may have VC-dimension 2^d but ${\bf M}^{\sf T}$ has lower VC-dimension in $\tilde{O}(n^{2-1/d})$ query time

Our proofs combine methods and insights from the areas of computational geometry, structural graph theory, and dynamic algebraic algorithms!

Conclusion

- Sub-quadratic time OMv for structured inputs.
- Evidence why heuristics work well in practice.
- New tool for dynamic algorithms.

Thanks!