DISENTANGLING LATENT SHIFTS OF IN-CONTEXT LEARNING WITH WEAK SUPERVISION

Josip Jukić Jan Šnajder

TakeLab, University of Zagreb

MOTIVATION

- In-Context Learning (ICL) is unstable: performance varies with demonstration choice/order.
- ICL is inefficient: long prompts increase latency and cost; limited by context window.
- Idea: Treat ICL as weak supervision. Learn the latent shift induced by demos and store it in an adapter.

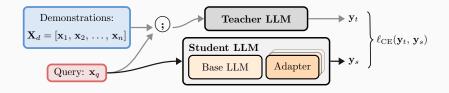
LINEARIZED ATTENTION VIEW

$$\mathbf{f}_{\mathrm{AH}}(\mathbf{x}_q^{(t)}) \approx \underbrace{\mathbf{W}_{\mathrm{ZS}}\,\mathbf{q}^{(t)}}_{\text{zero-shot}} + \underbrace{\Delta\mathbf{W}_{\mathrm{ICL}}\,\mathbf{q}^{(t)}}_{\text{latent shift from demos}}$$

- Prior analyses often assume linear attention, neglecting nonlinear/residual dynamics.
- Goal: learn ∆W_{ICL} into a compact adapter.

 $\mathbf{x}_{q}^{(t)}$ – query token at step t $\mathbf{q}^{(t)}$ – query vector \mathbf{W}_{ZS} – zero-shot weights $\Delta \mathbf{W}_{\mathrm{ICL}}$ – demo-induced shift.

WEAK SUPERVISION



$$\mathscr{L} = \sum_{\mathbf{x}_q \in \mathscr{D}_{\text{unlab}}} \ell_{\text{CE}}\big(\mathbf{f}_{\text{teacher}}\big([\mathbf{X}_d; \mathbf{x}_q]\big), \mathbf{f}_{\text{student}}\big(\mathbf{x}_q\big)\big)$$

- Teacher conditions on demos + query; student uses query only.
- Student adapter learns to match teacher logits ⇒ weakly supervised.

GENERALIZATION EXPERIMENTS

		GLUE								
Method	RTE	QNLI	MNLI	COLA	MRPC	QQP	MISC			
<i>n</i> -shot PBFT	0.0		0.0	58.5 _{4.0} 56.5 _{3.0}		0.0	84.0 _{4.0} 83.5 _{4.5}			
Batch-ICL WILDA		0.0	0.0	59.8 _{3.7} 64.3 _{2.2}		=.,	81.0 _{2.5} 88.0 _{2.2}			

ID generalization accuracy for Llama 3 (8B) in the 16-shot setup.

- WILDA achieves the strongest ID generalization, outperforming standard ICL and related methods.
- Highly stable: variance is reduced compared to standard ICL.
- Strong OOD generalization: WILDA maintains high accuracy and low variance when evaluated on near-OOD GLUE pairs.

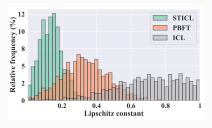
KNOWLEDGE FUSION VIA ADAPTER ARITHMETIC

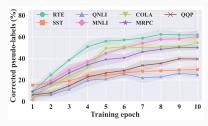
			GLUE							
Demos	Method	RTE	QNLI	MNLI	COLA	MRPC	QQP	MISC		
32	<i>n</i> -shot	75.3 _{3.2}	77.7 _{2.9}	69.1 _{1.9}	58.3 _{1.5}	76.4 _{2.2}	74.2 _{1.9}	84.5 _{2.1}		
32	WILDA	87.9 _{0.6}	83.1 _{0.9}	$74.0_{1.1}$	64.6 _{1.2}	79.4 _{0.6}	74.8 _{1.5}	$89.0_{0.4}$		
2×16	WILDA	87.1 _{1.6}	81.5 _{5.0}	75.5 _{2.5}	68.4 _{1.8}	$78.5_{1.4}$	74.1 _{1.6}	89.5 _{2.0}		

ID generalization accuracy for **Llama 3 (8B)** with fused demonstrations.

- Adapter arithmetic merges latent shifts from multiple subsets without retraining.
- Stable fusion: variance remains low as subsets increase.
- Enables scalable task composition beyond context-window limits.

WEAK-TO-STRONG GENERALIZATION I

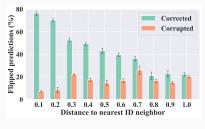


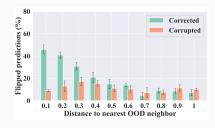


(a) Approximated Lipschitz constants

- (b) Pseudo-label correction over epochs
- · WILDA achieves strong local stability
- · Pseudo-label corrections steadily increase across epochs

WEAK-TO-STRONG GENERALIZATION II





(c) ID corrected/corrupted rates

(d) OOD corrected/corrupted rates

- Correction rates fall sharply with distance to the nearest correctly pseudo-labeled neighbor → coverage expansion.
- The same pattern appears on OOD data → WILDA generalizes corrections beyond the ID manifold.