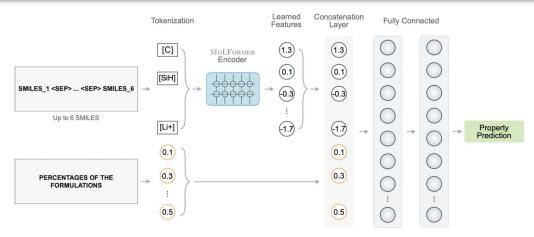
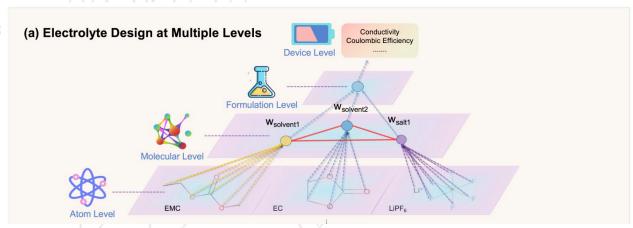
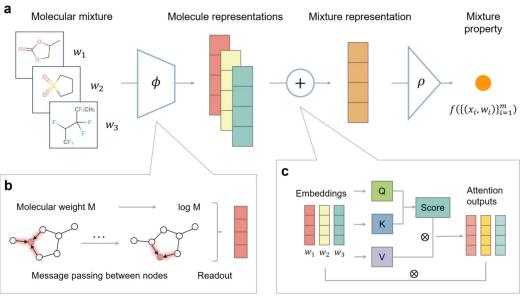


Geometric Mixture Models for Electrolyte Conductivity Prediction


Anyi Li, Jiacheng Cen, Songyou Li, Mingze Li, Yang Yu, Wenbing Huang 2025.10



Representation of Mixture Systems


MM-MoLFormer[1] concatenates embedding and proportion of components, but **ignores the permutation invariance**.

Uni-ELF[3] uses a hierarchical graph representation, but geometric messages cannot pass between different components.

- Inputs:
 - A set of graphs $\{\mathcal{G}_m\}_{m=1}^M$, $\mathcal{G}_m = (\boldsymbol{H}_m, \overrightarrow{\boldsymbol{X}}_m, \overrightarrow{\boldsymbol{V}}_m, w_m)$.
 - A global environment condition c, i.e. temperature.
- Task: Scalar and vector information of mixture systems.

$$\varphi \colon (\{\mathcal{G}_m(\boldsymbol{H}_m, \vec{\boldsymbol{X}}_m, \vec{\boldsymbol{V}}_m, w_m)\}_{m=1}^M, \boldsymbol{c}) \mapsto (\{\boldsymbol{H}_m', \vec{\boldsymbol{V}}_m'\}_{m=1}^M, \kappa),$$

MolSets[2] respects permutation invariance but **discards 3D** molecular geometry.

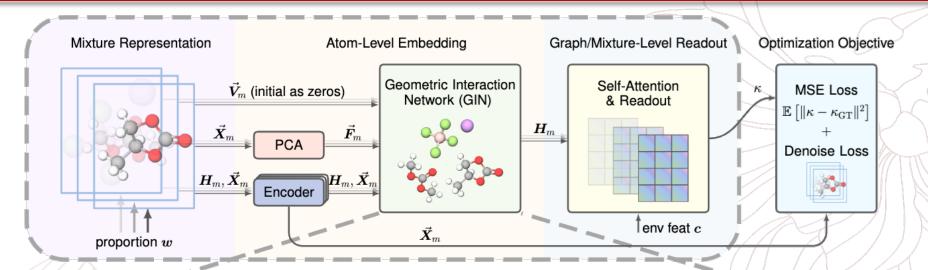
Symmetry Constraints

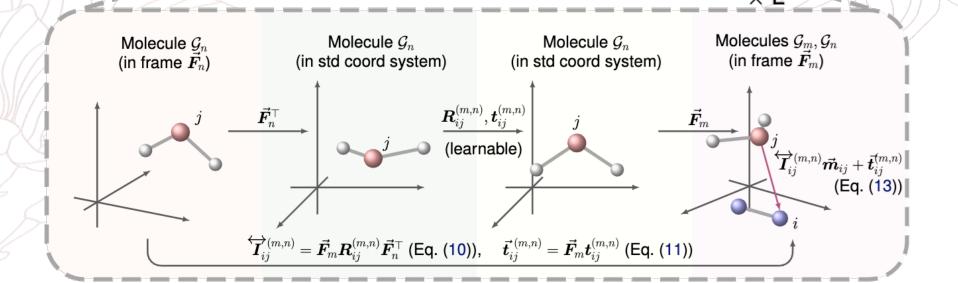
- Node-level symmetry constraints
 - Permutation-equivariant in each graph

$$\varphi \colon (\{\mathcal{G}_m(\boldsymbol{H}_m\boldsymbol{P}_m, \vec{\boldsymbol{X}}_m\boldsymbol{P}_m, \vec{\boldsymbol{V}}_m\boldsymbol{P}_m, w_m)\}_{m=1}^M, \boldsymbol{c}) \mapsto (\{\boldsymbol{H}_m'\boldsymbol{P}_m, \vec{\boldsymbol{V}}_m'\boldsymbol{P}_m\}_{m=1}^M, \kappa),$$

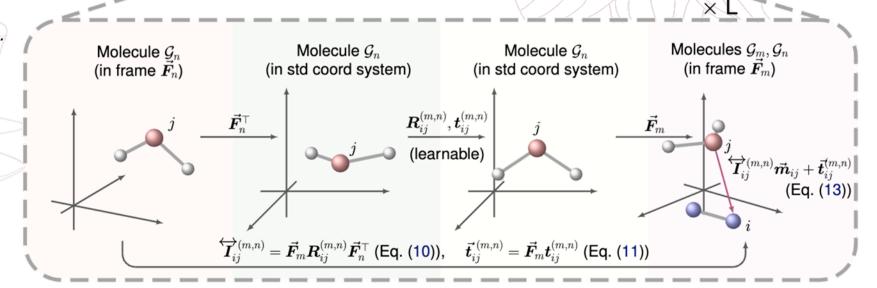
• SE(3) equivariant on each graph

$$\varphi \colon (\{\mathcal{G}_m(\boldsymbol{H}_m,\boldsymbol{R}_m\vec{\boldsymbol{X}}_m,\boldsymbol{R}_m\vec{\boldsymbol{V}}_m,w_m)\}_{m=1}^M,\boldsymbol{c}) \mapsto (\{\boldsymbol{H}_m',\boldsymbol{R}_m\vec{\boldsymbol{V}}_m'\}_{m=1}^M,\kappa),$$

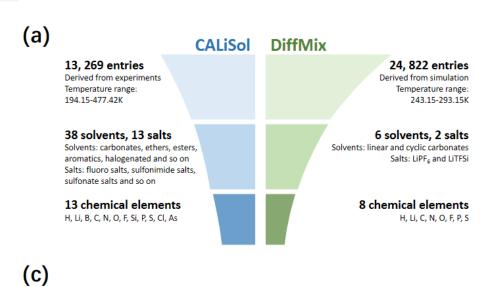

- Graph-level symmetry constraints
 - Permutation-equivariant with respect to the order of the graphs

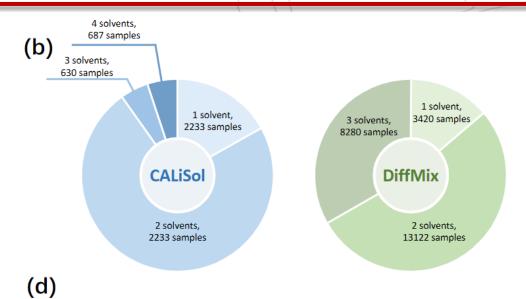

$$\varphi \colon (\{\mathcal{G}_{\sigma(m)}\}_{m=1}^M, oldsymbol{c}) \overset{1}{\mapsto} (\{oldsymbol{H}_{\sigma(m)}', oldsymbol{V}_{\sigma(m)}'\}_{m=1}^M, \kappa),$$

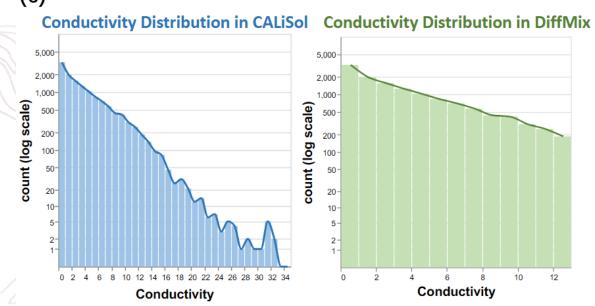
Pipeline

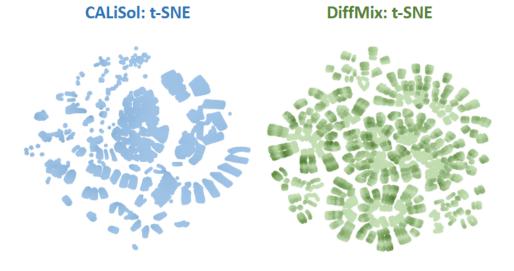


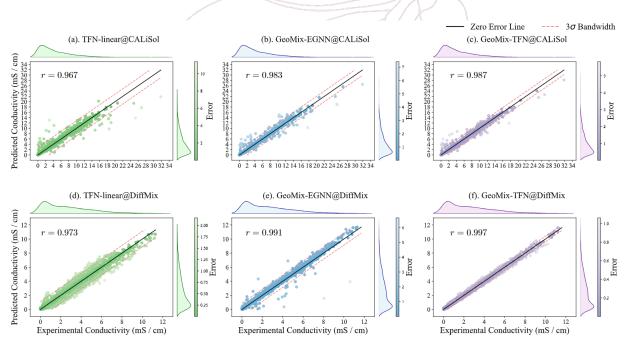
Geometric Interaction Network (GIN)


- By constructing local frames, equivariant message can pass across molecules.
- Intermolecular Transformation:
 - $\mathbf{z}_{ij}^{(m,n)} = \sigma_{\text{inv}}\left(\mathbf{h}_{i}^{(m)}, \mathbf{h}_{j}^{(n)}, \|\vec{\mathbf{x}}_{i}^{(m)}\|, \|\vec{\mathbf{x}}_{j}^{(n)}\|, \|\vec{\mathbf{v}}_{i}^{(m)}\|, \|\vec{\mathbf{v}}_{j}^{(n)}\|\right)$.
 - $\vec{\boldsymbol{I}}_{ij}^{(m,n)} \coloneqq \vec{\boldsymbol{F}}_{m} \boldsymbol{R}_{ij}^{(m,n)} \vec{\boldsymbol{F}}_{n}^{\mathsf{T}}, \quad \boldsymbol{R}_{ij}^{(m,n)} = \sigma_{\mathrm{rot}} \left(\boldsymbol{z}_{ij}^{(m,n)} \right) \in \mathbb{R}^{3 \times 3}, \quad \vec{\boldsymbol{t}}_{ij}^{(m,n)} \coloneqq \vec{\boldsymbol{F}}_{m} \boldsymbol{t}_{ij}^{(m,n)}, \quad \boldsymbol{t}_{ij}^{(m,n)} = \sigma_{t} \left(\boldsymbol{z}_{ij}^{(m,n)} \right) \in \mathbb{R}^{3}.$
- Message Construction:
 - $m_{ij}^{(m,n)} = \sigma_{\text{msg}}\left(\boldsymbol{h}_{i}^{(m)}, \boldsymbol{h}_{j}^{(n)}, \left\|\vec{\boldsymbol{x}}_{i}^{(m)}\right\|, \left\|\vec{\boldsymbol{x}}_{j}^{(n)}\right\|, \left\|\vec{\boldsymbol{v}}_{i}^{(m)}\right\|, \left\|\vec{\boldsymbol{v}}_{i}^{(n)}\right\|, \left\|\vec{\boldsymbol{t}}_{ij}^{(m,n)}\right\|\right).$
 - $\overrightarrow{\boldsymbol{m}}_{ij}^{(m,n)} = \sigma_{\overrightarrow{\boldsymbol{x}}} \left(\boldsymbol{m}_{ij}^{(m,n)} \right) \overrightarrow{\boldsymbol{x}}_{j}^{(n)} + \sigma_{\overrightarrow{\boldsymbol{v}}} \left(\boldsymbol{m}_{ij}^{(m,n)} \right) \overrightarrow{\boldsymbol{v}}_{j}^{(n)}.$
- Aggregation and Update:
 - $\overrightarrow{\boldsymbol{m}}_{ij}^{(m)} = \overrightarrow{\boldsymbol{I}}_{ij}^{(m,n)} \overrightarrow{\boldsymbol{m}}_{ij}^{(m,n)} + \overrightarrow{\boldsymbol{t}}_{ij}^{(m,n)}$






Dataset



Experiment

Models	CALiSol		DiffMix	
	$MSE\downarrow$	Pearson $r \uparrow$	$MSE\downarrow$	Pearson $r \uparrow$
MLP	3.657	0.906	1.363	0.874
MM-MoLFormer [12]	5.488	0.825	1.901	0.812
MolSets-Conv [13]	2.230	0.924	1.440	0.868
MolSets-SAGE [13]	2.751	0.909	0.708	0.937
EGNN-att [54]	2.666	0.908	0.752	0.930
TFN-att [55]	1.808	0.946	0.804	0.921
EGNN-linear [54]	1.461	0.951	0.195	0.988
TFN-linear [55]	1.107	0.967	0.285	0.973
GeoMix-EGNN	0.552	0.985	0.088	0.992
GeoMix-TFN	0.432	0.987	0.035	0.997

Ablation Study and Other Experiments (***)

Table 2: Ablations on CALiSol dataset.

CALiSolMSE \downarrow Pearson $r \uparrow$ GeoMix 0.552 0.985 Proportion EmbeddingMultiply 3.657 0.906 Transformation Matrix's FormQuaternion 0.702 0.981 6D vector 0.574 0.983 Graph-wise 0.662 0.980 Linear v.s. AttentionGeoMix-linear 0.851 0.975 Noisy Nodes Loss w/o Noisy Nodes 1.213 0.969					
Proportion Embedding Multiply 3.657 0.906 Transformation Matrix's Form Quaternion 0.702 0.981 6D vector 0.574 0.983 Graph-wise 0.662 0.980 Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	CALiSol	$MSE\downarrow$	Pearson $r \uparrow$		
Multiply 3.657 0.906 Transformation Matrix's Form Quaternion 0.702 0.981 6D vector 0.574 0.983 Graph-wise 0.662 0.980 Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	GeoMix	0.552	0.985		
Transformation Matrix's Form Quaternion 0.702 0.981 6D vector 0.574 0.983 Graph-wise 0.662 0.980 Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	Proportio	on Embeda	ling		
Quaternion 0.702 0.981 6D vector 0.574 0.983 Graph-wise 0.662 0.980 Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	Multiply	3.657	0.906		
6D vector 0.574 0.983 Graph-wise 0.662 0.980 **Linear v.s. Attention** GeoMix-linear 0.851 0.975 **Noisy Nodes Loss**	Transformati	on Matrix	's Form		
Graph-wise 0.662 0.980 Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	Quaternion	0.702	0.981		
Linear v.s. Attention GeoMix-linear 0.851 0.975 Noisy Nodes Loss	6D vector	0.574	0.983		
GeoMix-linear 0.851 0.975 Noisy Nodes Loss	Graph-wise	0.662	0.980		
Noisy Nodes Loss	Linear v	.s. Attenti	on		
	GeoMix-linear	0.851	0.975		
w/o Noisy Nodes 1.213 0.969	Noisy Nodes Loss				
	w/o Noisy Nodes	1.213	0.969		

Table 4: Results of OOD evaluation across conductivity on CALiSol dataset. Bold values indicate the best performance, while underlined values indicate the second-best.

Models	MSE ↓	MAE↓	Pearson $r \uparrow$	Spearman $r \uparrow$
EGNN-linear [54]	32.720	4.457	0.253	0.341
TFN-linear [55]	24.218	3.585	0.397	0.508
GeoMix-EGNN	17.132 19.427	2.853	0.579	0.571
GeoMix-TFN		2.925	<u>0.436</u>	0.609

Table 5: Results of OOD evaluation across temperature on CALiSol dataset. Bold values indicate the best performance, while underlined values indicate the second-best.

Models	MSE ↓	MAE ↓	Pearson $r \uparrow$	Spearman $r \uparrow$
MLP	32.432	3.857	0.432	0.556
MM-MoLFormer [12]	22.935	2.837	0.512	0.560
MolSets-Conv [13]	9.930	2.196	0.839	0.845
MolSets-SAGE [13]	9.193	2.135	0.784	0.802
EGNN-att [54]	8.134	1.594	0.813	0.861
TFN-att [55]	6.516	1.383	0.853	0.887
EGNN-linear [54]	7.675	1.616	0.827	0.847
TFN-linear [55]	4.780	1.286	0.914	0.930
GeoMix-EGNN	2.366	0.883	0.950	0.948
GeoMix-TFN	2.354	<u>0.917</u>	0.952	<u>0.945</u>

References

- [1] Soares, Eduardo, et al. "Capturing formulation design of battery electrolytes with chemical large language model." *AI for Accelerated Materials Design-NeurIPS 2023 Workshop*. 2023.
- [2] Zhang, Hengrui, et al. "Molsets: Molecular graph deep sets learning for mixture property modeling." *arXiv preprint arXiv:2312.16473* (2023).
- [3] Zeng, Boshen, et al. "Uni-ELF: A Multi-Level Representation Learning Framework for Electrolyte Formulation Design." *arXiv preprint arXiv:2407.06152* (2024).