

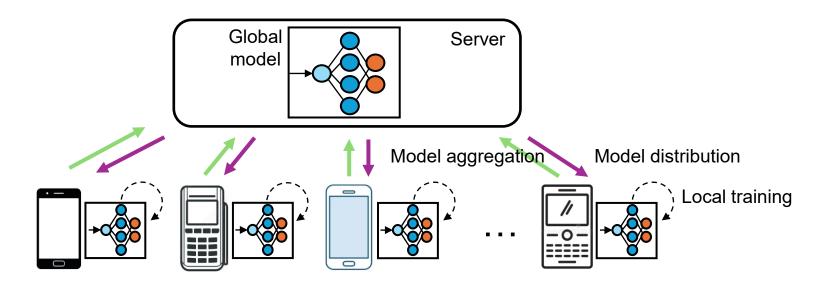
Layer-wise Update Aggregation with Recycling for Communication-Efficient Federated Learning

Jisoo Kim¹, Sungmin Kang², Sunwoo Lee^{1*}

- 1. Inha University, Incheon, Republic of Korea
- 2. University of Southern California, Los Angeles, CA, USA

Problem Statement

- Expensive model aggregation cost in Federated Learning
 - The Larger the model the more expensive the communication cost.



Related Work

Existing Communication-efficient Methods for FL

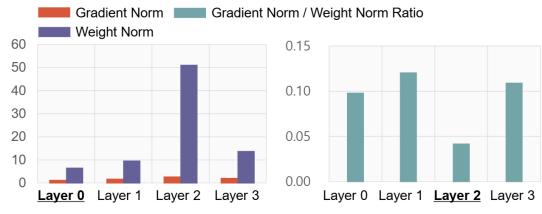
- Quantization (Reisizadeh et al., AISTATS 2020, FedPAQ)
- Sparsification (Jiang et al., TNNLS 2022, PruneFL.)
- Binarization (Li et al., ICML 2024, FedBAT.)
- Model Reparameterization (Nam et al., ICLR 2022, FedPara.)

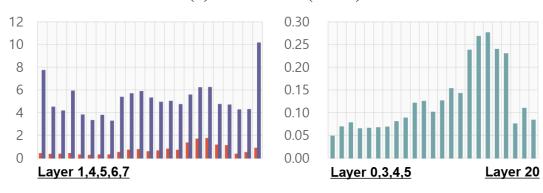
Commonly drop a part of model parameters or updates.

Is update dropping the best way to reduce the communication cost?

Motivation

Limitations of gradient norm as a parameter importance metric



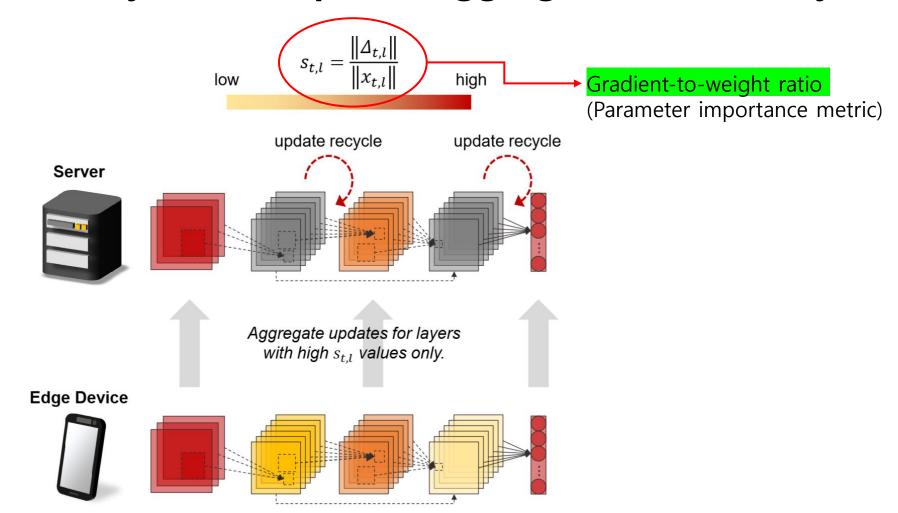


(b) CIFAR-10 (ResNet20)

The gradient norm does not account for parameter magnitude, so it does not effectively represent importance in terms of parameter changes.

Proposed Method

FedLUAR: Federated Layer-wise Update Aggregation with Recycling



Empirical Results

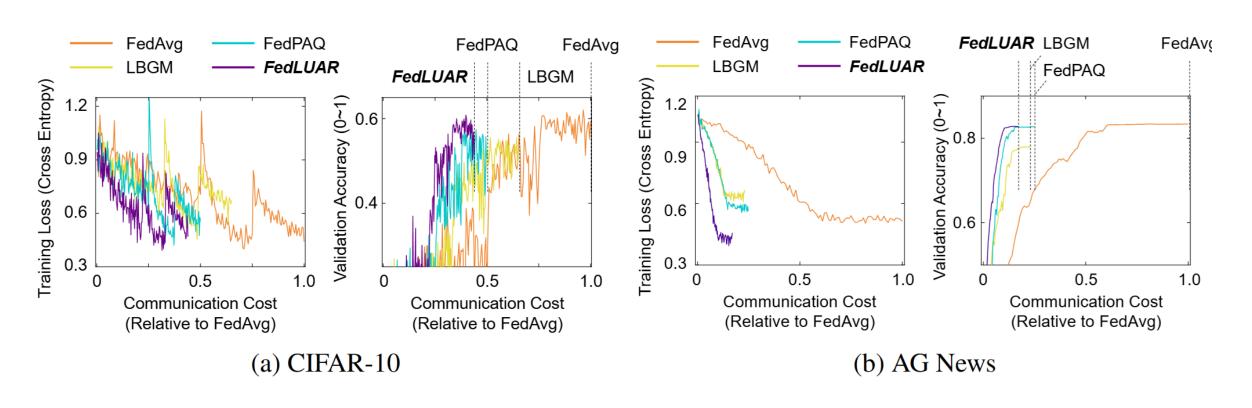
Classification Performance Comparison

Method	CIFAR-10 (ResNet20)		CIFAR-100 (WRN-28)		FEMNIST (CNN)		AG News (DistillBERT)	
	Accuracy	Comm	Accuracy	Comm	Accuracy	Comm	Accuracy	Comm
FedAvg	$61.27 \pm 0.7\%$	1.00	$59.88 \pm 0.8\%$	1.00	$71.01 \pm 0.4\%$	1.00	$82.66 \pm 0.2\%$	1.00
LBGM	$54.87 \pm 0.5\%$	0.65	$57.13 \pm 0.2\%$	0.87	$69.83 \pm 1.0\%$	0.71	$77.96 \pm 0.1\%$	0.23
FedPAQ	$57.42 \pm 0.2\%$	0.50	$36.15 \pm 0.1\%$	0.50	$71.54 \pm 0.1\%$	0.25	$82.72 \pm 0.1\%$	0.25
FedPara	$55.16 \pm 0.1\%$	0.51	$46.14 \pm 0.1\%$	0.61	$67.69 \pm 0.1\%$	0.22	$75.22 \pm 0.1\%$	0.69
PruneFL	$56.76 \pm 0.1\%$	0.51	$59.40 \pm 0.1\%$	0.69	$69.42 \pm 0.4\%$	0.19	$77.25 \pm 0.1\%$	0.22
FDA	$56.54 \pm 0.3\%$	0.50	$51.25 \pm 0.1\%$	0.60	$70.61 \pm 0.1\%$	0.25	$64.94 \pm 0.1\%$	0.50
FedBAT	$39.56 \pm 0.1\%$	0.03	$47.24 \pm 0.1\%$	0.03	$68.27 \pm 0.1\%$	0.03	$76.38 \pm 0.1\%$	0.57
FedLUAR	$60.15 \pm 0.7\%$	0.47	$59.73 \pm 0.6\%$	0.61	$\textbf{73.17} \pm \textbf{0.1}\%$	0.18	$82.80 \pm 0.1\%$	0.17

Communication Cost Analysis

Empirical Results

Learning curves w.r.t. communication cost



Conclusion

- 1. Based on the proposed parameter importance metric (**gradient-to- weight ratio**), we demonstrate that less critical layers' updates can be safely recycled.
- 2. We theoretically proved that <u>update recycling still guarantees a</u> <u>convergence</u> for non-convex and smooth optimization problems.
- 3. Through various benchmarks, we empirically proved that the update recycling scheme <u>effectively reduces the model aggregation cost</u> while maintaining the model accuracy in realistic FL environments.

Thank you for your attention!

