
Learning Crossmodal Interaction Patterns via Attributed Bipartite Graphs for Single-Cell Omics

Xiaotang Wang¹, Xuanwei Lin², Yun Zhu³, Hao Li⁴, Yongqi Zhang^{1,†}

I. Motivation: Challenges in Existing Frameworks

(i) Sparse modality signals.

The expression vectors of RNA and ATAC are sparse; thus, modeling them with dense vectors will introduce noise from unexpressed signals.

(ii) Underutilization of biological features.

Each RNA and ATAC signal carries rich biological attributes (e.g., statistical summaries, genomic annotations, and DNA sequences), which are not effectively incorporated by existing methods.

(iii) Insufficient modeling of crossmodal interaction.

Most current methods do not directly model the interaction between expressed ATAC and RNA signals, with limitations in understanding the underlying regulation.

II. Graph Construction: From Modality Expression to Attributed Bipartite Graphs

We introduce a graph-based perspective built upon the concept of Attributed Bipartite Graphs (ABGs).

1 Nodalizing Expressed Multimodal Signals into Bipartite Node Set.

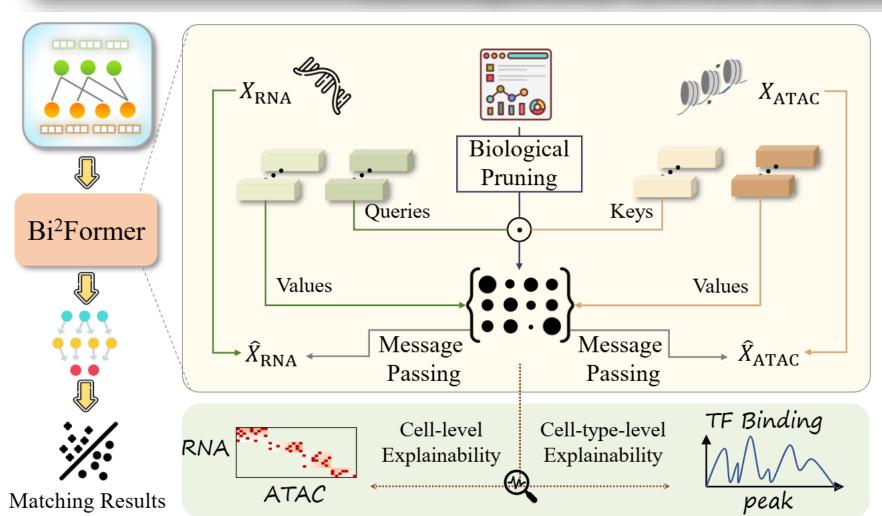
$$\mathcal{V}_{\text{RNA}} = \{ \text{RNA}_m \mid \mathbf{x}_{\text{RNA}}[m] \neq 0 \}, \quad \mathcal{V}_{\text{ATAC}} = \{ \text{ATAC}_n \mid \mathbf{x}_{\text{ATAC}}[n] \neq 0 \}.$$

2 Embedding Biological Attributes into Node Features.

$$X_v = \mathtt{Concat}(\mathtt{ID}(v), \mathtt{Expr}(v), \mathtt{BioAttr}(v))$$

(3) Edge Design with Biological Prior Knowledge.

We introduce a chromosomal mask as adjacency matrix to constrain attention computation within chromosomally plausible regions. These prior-informed connections improve inductive bias and reduce noise from fully associations.



III. Bi²Former: An ABG-based Interaction Learner (Biologically-driven Bipartite Graph Transformer)

Biologically-driven Crossmodal Attention.

$$Q = X_{\text{RNA}} W_Q, \quad K = X_{\text{ATAC}} W_K,$$

$$V_{\text{RNA}} = X_{\text{RNA}} W_{V_r}, \quad V_{\text{ATAC}} = X_{\text{ATAC}} W_{V_a},$$

Biological Pruning.

 $\tilde{\alpha} = \text{Threshold}(\sigma(\alpha), \tau) \in \mathbb{R}^{|\mathcal{V}_{\text{RNA}}| \times |\mathcal{V}_{\text{ATAC}}|}.$

With a top-k pruning, aligns with the biological truth that each gene is typically regulated by a limited number of ATAC.

Message Passing.

$$X_{\text{RNA}}^{\text{cross}}[r] = \sum_{a \in \mathcal{V}_{\text{ATAC}}} \tilde{\alpha}_{r,a} \cdot V_{\text{ATAC}}[a]$$
$$X_{\text{ATAC}}^{\text{cross}}[a] = \sum_{r \in \mathcal{V}_{\text{RNA}}} \tilde{\alpha}_{r,a} \cdot V_{\text{RNA}}[r]$$

IV. Experiments: Main Results, Few-shot, Biological Interpretation, and Ablation

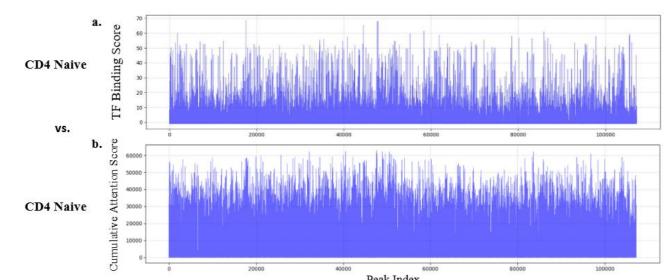
Crossmodal Matching

Dataset	ISSAAC-seq		10×PBMC		SHARE-seq		SNARE-seq		10×Multiome		Avg.	
Metric	ACC	ROC-AUC	ACC	AUC								
MultiVI	66.21 ± 1.46	69.32 ± 1.07	60.93 ± 2.83	63.85 ± 1.96	64.42 ± 2.19	68.87 ± 1.03	56.76 ± 1.94	61.12 ± 1.18	69.35 ± 1.21	72.64 ± 1.36	63.53	67.16
CLUE	71.28 ± 1.24	75.01 ± 0.98	68.73 ± 1.67	72.26 ± 0.94	63.21 ± 2.08	67.96 ± 1.19	59.32 ± 1.59	63.17 ± 0.93	73.72 ± 0.97	76.92 ± 1.17	67.25	71.06
Cobolt	69.21 ± 2.51	73.69 ± 1.72	61.65 ± 3.05	66.74 ± 1.87	58.67 ± 3.14	61.74 ± 1.62	57.46 ± 2.03	60.91 ± 1.39	71.16 ± 1.44	74.15 ± 1.61	63.63	67.45
GLUE	74.28 ± 0.91	77.40 ± 0.92	72.51 ± 1.02	79.68 ± 0.71	66.89 ± 1.43	73.14 ± 1.17	64.47 ± 1.22	68.28 ± 1.21	76.93 ± 0.82	80.98 ± 0.92	71.01	75.90
scMoGNN	73.72 ± 0.96	78.58 ± 0.89	72.41 ± 1.37	80.76 ± 0.83	69.84 ± 1.81	74.39 ± 0.94	69.03 ± 1.22	72.32 ± 0.97	75.49 ± 1.31	80.04 ± 1.01	72.10	77.22
scMaui	71.64 ± 0.97	76.19 ± 0.83	63.19 ± 2.74	67.42 ± 1.52	65.93 ± 1.78	69.15 ± 0.96	58.42 ± 1.65	63.14 ± 0.95	75.07 ± 0.75	78.81 ± 1.13	66.85	70.94
MLP	67.39 ± 1.18	71.04 ± 0.79	62.25 ± 3.74	55.87 ± 2.06	58.97 ± 0.74	62.52 ± 0.57	54.74 ± 1.26	59.72 ± 1.01	70.44 ± 2.07	72.62 ± 1.98	62.76	64.35
GCNII	72.64 ± 1.29	77.32 ± 0.63	73.64 ± 0.98	79.60 ± 0.54	69.49 ± 1.13	74.01 ± 0.65	62.71 ± 1.07	67.93 ± 0.59	76.28 ± 1.13	81.06 ± 0.76	70.95	75.98
GraphSAGE	76.98 ± 0.61	82.37 ± 0.35	76.92 ± 1.32	81.52 ± 0.63	67.56 ± 1.24	70.93 ± 0.72	66.53 ± 0.83	70.56 ± 0.57	81.94 ± 1.89	85.79 ± 1.44	73.99	78.23
GT	73.42 ± 0.52	80.93 ± 0.31	78.04 ± 0.79	82.04 ± 0.47	72.17 ± 0.53	78.34 ± 0.36	68.74 ± 0.69	73.89 ± 0.42	80.12 ± 0.96	85.71 ± 0.61	74.50	80.18
Bi ² Former	84.40 + 0.48	89.24 ± 0.31	88.74 + 0.36	92.37 ± 0.16	79.84 + 0.29	84.96 + 0.18	73.56 + 0.37	77.30 ± 0.21	90.41 + 0.24	93.41 + 0.30	83.39	87.46

Figure 3: Results for crossmodal matching task with different training sizes.

Cobolt 57.84 ± 2.01 58.67 ± 1.96 55.27 ± 2.47 48 scMaui 62.43 ± 1.84 58.54 ± 1.79 54.64 ± 2.05 52 MLP 65.72 ± 1.13 61.84 ± 1.69 58.74 ± 1.12 53 GCNII 72.18 ± 1.29 72.52 ± 0.78 67.37 ± 0.96 61 GraphSAGE 74.15 ± 0.93 76.31 ± 0.65 67.02 ± 1.31 64 GT 71.92 ± 0.82 76.43 ± 0.81 69.94 ± 0.95 67 Bi²Former 82.74 ± 0.74 84.96 ± 0.49 78.07 ± 0.61 71

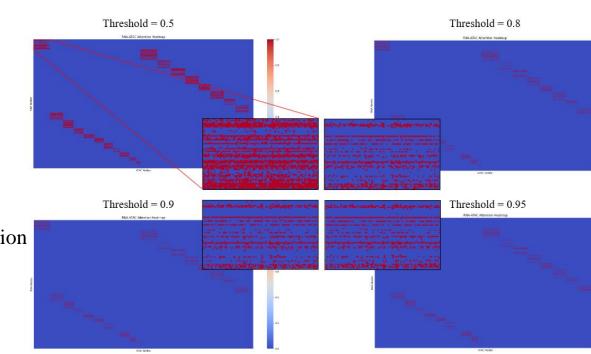
Cross-cell-type Generalization


		Ablation Study
 	-	Methods
2 1		Bi ² Former
1 4		w/o ID w/o Attribute
3		w/o BP
7		w/o Edge
2 1	_	w/o Attribute, BP, and Edge
2		

Avg. Δ

 $\downarrow 2.93$

 $\downarrow 4.28$


Biological Interpretation

on ranks: 0.909 Pearson Correlation Coefficient: 0.633 Jaccard Index (TOP10000): 0.54

Left: Comparison between TF binding scores and cumulative attention scores within the same cell type (CD4).

Right: Case study of RNA–ATAC attention matrices for a representative single cell under different threshold values τ.

