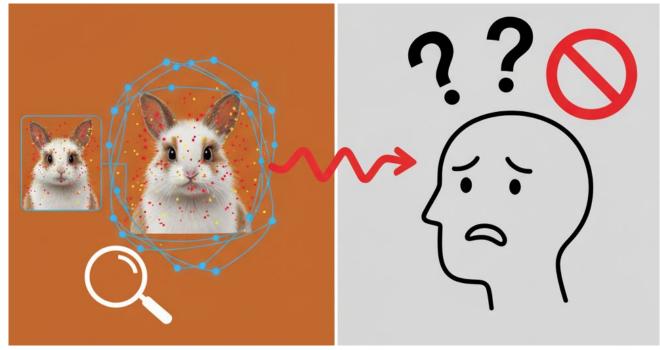


FACE: Faithful Automatic Concept Extraction

Dipkamal Bhusal¹, Michael Clifford², Sara Rampazzi³, Nidhi Rastogi¹

¹Rochester Institute of Technology, ²Toyota InfoTech Labs (Toyota Motor North America), ³University of Florida

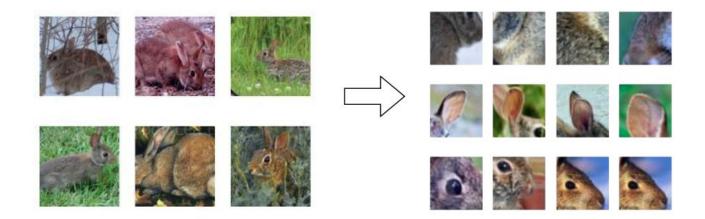
Motivation



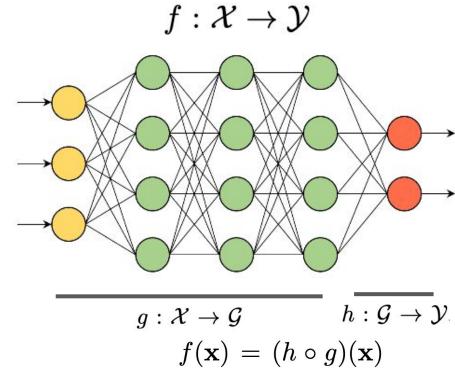
Semantic interpretability gap

Motivation

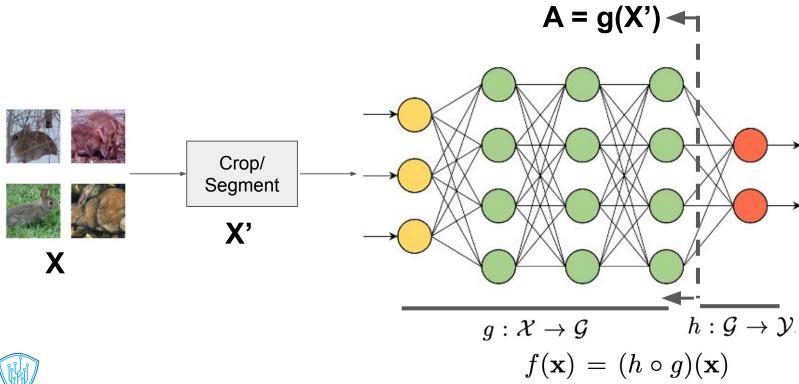
Concept based explanation methods *explain* model predictions in terms of high-level, human-interpretable concepts.



Problem formulation: Automatic Concept Extraction Methods



Problem formulation: Automatic Concept Extraction Methods



Problem formulation: Non-negative matrix factorization

Compute a set of concept activation vector **W** from **A**:

$$(\mathbf{U}, \mathbf{W}) = \underset{\mathbf{U} \geq 0, \mathbf{W} \geq 0}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{A} - \mathbf{U}\mathbf{W}^{\mathsf{T}}\|_F^2,$$

W: Concept Activation Vectors

U: Transformed points on W

UW^T: Reconstructed activation vector (A')

A first-order Taylor expansion of the fixed classifier head (h) around reconstructed activations (A') obtained with NMF:

$$h(\mathbf{A}') - h(\mathbf{A}) \approx \nabla h(\mathbf{A}') \cdot (\mathbf{A} - \mathbf{A}')$$

A first-order Taylor expansion of the fixed classifier head (h) around reconstructed activations (A') obtained with NMF:

$$h(\mathbf{A}') - h(\mathbf{A}) \approx \nabla h(\mathbf{A}') \cdot (\mathbf{A} - \mathbf{A}')$$

Difference in classifier head prediction on reconstructed activation (A') and original activation (A),

A first-order Taylor expansion of the fixed classifier head (h) around reconstructed activations (A') obtained with NMF:

$$h(\mathbf{A}') - h(\mathbf{A}) \approx \nabla h(\mathbf{A}') \cdot (\mathbf{A} - \mathbf{A}')$$

depends on both Jacobian and reconstruction error (A'-A)

A first-order Taylor expansion of the fixed classifier head (h) around reconstructed activations (A') obtained with NMF:

$$h(\mathbf{A}') - h(\mathbf{A}) \approx \nabla h(\mathbf{A}') \cdot (\mathbf{A} - \mathbf{A}')$$

Model prediction on A and A' can differ significantly even when A' is close to A due to the Jacobian.

A first-order Taylor expansion of the fixed classifier head (h) around reconstructed activations (A') obtained with NMF:

$$h(\mathbf{A}') - h(\mathbf{A}) \approx \nabla h(\mathbf{A}') \cdot (\mathbf{A} - \mathbf{A}')$$

There is no bound on the difference between model prediction on original and reconstructed activation.

A faithfulness-aware variant of NMF that explicitly aligns the reconstructed activations with the model's predictive behavior.

A faithfulness-aware variant of NMF that explicitly aligns the reconstructed activations with the model's predictive behavior.

$$\min_{\mathbf{U} \geq 0, \, \mathbf{W} \geq 0} \frac{1}{2} \| \mathbf{A} - \mathbf{U} \mathbf{W}^{\top} \|_F^2$$

Original NMF Formulation

A faithfulness-aware variant of NMF that explicitly aligns the reconstructed activations with the model's predictive behavior.

$$\min_{\mathbf{U} > 0, \, \mathbf{W} > 0} \frac{1}{2} \|\mathbf{A} - \mathbf{U}\mathbf{W}^{\top}\|_F^2 + \lambda \cdot \mathrm{KL}(h(\mathbf{A}) \|h(\mathbf{U}\mathbf{W}^{\top}))$$

A faithfulness-aware variant of NMF that explicitly aligns the reconstructed activations with the model's predictive behavior.

$$\min_{\mathbf{U} \geq 0, \, \mathbf{W} \geq 0} \frac{1}{2} \|\mathbf{A} - \mathbf{U}\mathbf{W}^{\top}\|_F^2 + \lambda \cdot \mathrm{KL}(h(\mathbf{A}) \|h(\mathbf{U}\mathbf{W}^{\top}))$$

This ensures that model prediction remains consistent before and after matrix factorization.

A faithfulness-aware variant of NMF that explicitly aligns the reconstructed activations with the model's predictive behavior.

$$\min_{\mathbf{U} \geq 0, \, \mathbf{W} \geq 0} \frac{1}{2} \|\mathbf{A} - \mathbf{U}\mathbf{W}^{\top}\|_F^2 + \lambda \cdot \mathrm{KL}(h(\mathbf{A}) \|h(\mathbf{U}\mathbf{W}^{\top}))$$

- Cannot apply multiplicative update rules.
- Use projected gradient descent.
- Convergence is guaranteed under mild conditions*.

Let **p** and **q** be softmax/predictions before and after reconstruction. Then, FACE minimizes

$$\min_{\mathbf{U}>0, \, \mathbf{W}>0} \frac{1}{2} \|\mathbf{A} - \mathbf{U}\mathbf{W}^{\top}\|_F^2 + \lambda \cdot \text{KL}(p\|q)$$

Let **p** and **q** be softmax/predictions before and after reconstruction. Then, FACE minimizes

$$\min_{\mathbf{U} \geq 0, \, \mathbf{W} \geq 0} \frac{1}{2} \| \mathbf{A} - \mathbf{U} \mathbf{W}^\top \|_F^2 + \lambda \cdot \text{KL}(p \| q)$$

Minimizing KL divergence between p and q

Let **p** and **q** be softmax/predictions before and after reconstruction. Then, FACE minimizes

$$\min_{\mathbf{U} \ge 0, \, \mathbf{W} \ge 0} \frac{1}{2} \| \mathbf{A} - \mathbf{U} \mathbf{W}^\top \|_F^2 + \lambda \cdot \text{KL}(p \| q)$$

Bounds the difference between two distribution. With Pinsker's inequality,

Let **p** and **q** be softmax/predictions before and after reconstruction. Then, FACE minimizes

$$\min_{\mathbf{U} \geq 0, \, \mathbf{W} \geq 0} \frac{1}{2} \|\mathbf{A} - \mathbf{U} \mathbf{W}^{\top}\|_F^2 + \lambda \cdot \text{KL}(p\|q)$$

Bounds the difference between two distribution. With Pinsker's inequality,

$$\|p - q\|_1 \le \sqrt{2 \cdot \text{KL}(\cdot \| \cdot)} \le \sqrt{2\varepsilon}$$

Let **p** and **q** be softmax/predictions before and after reconstruction. Then, FACE minimizes

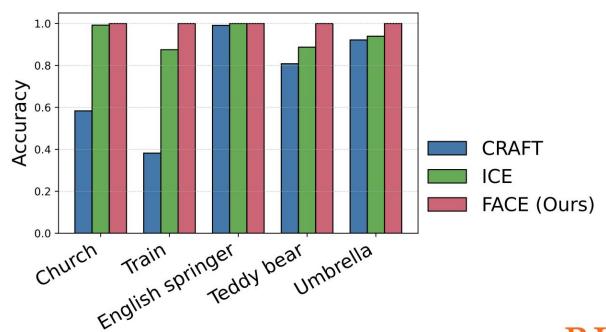
$$\min_{\mathbf{U} \ge 0, \, \mathbf{W} \ge 0} \frac{1}{2} \| \mathbf{A} - \mathbf{U} \mathbf{W}^\top \|_F^2 + \lambda \cdot \text{KL}(p \| q)$$

Bounds the difference between two distribution. With Pinsker's inequality,

$$||p - q||_1 \le \sqrt{2 \cdot \text{KL}(\cdot || \cdot)} \le \sqrt{2\varepsilon}$$

RIT | Rochester Institute of Technology

Failure case of unconstrained NMF: Recovering model accuracy on reconstructed activation vector



Evaluation

Concept Insertion (C-Ins):

 How fast the model accuracy increases when the most important concepts are added into a blank representation?

Concept Deletion (C-Del):

 How fast the model accuracy drops when the most important concepts are removed from the latent representation?

Concept sparsity (C-Gini):

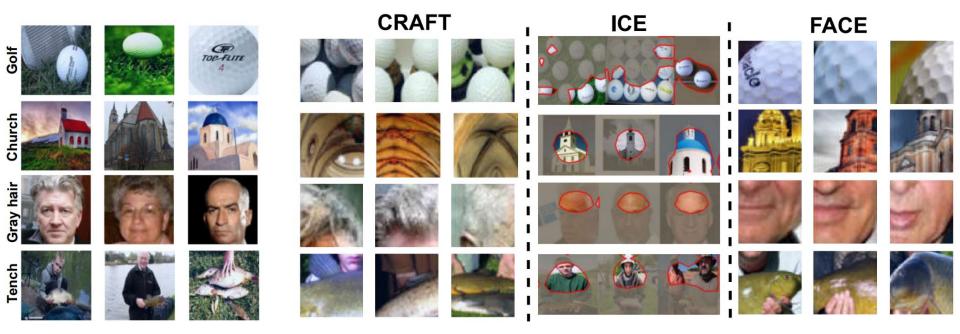
- How is the distribution of importance scores for each concept?
- Concept importance are computed using Sobol-concept importance.

Evaluation

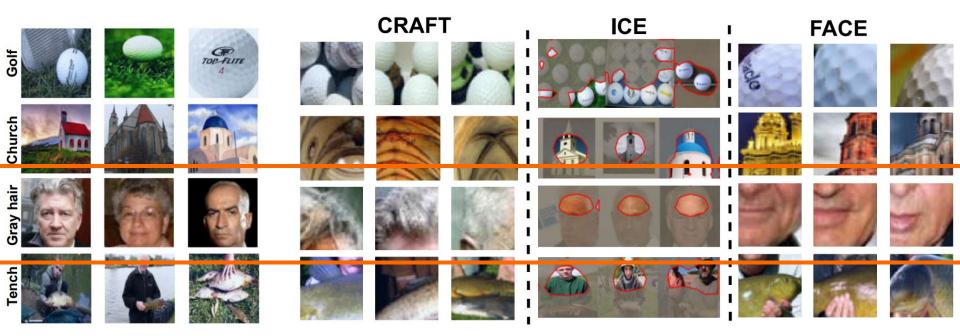
			ResNet-34			MobileNetV2	
		C-Ins ↑	C-Del ↑	C-Gini ↑	C-Ins ↑	C-Del ↑	C-Gini ↑
ImageNet	ICE CRAFT FACE (Ours)	0.908 ± 0.034 0.932 ± 0.001 0.969 ± 0.010	0.484 ± 0.063 0.752 ± 0.031 0.891 ± 0.011	0.537 ± 0.071 0.835 ± 0.031 0.895 ± 0.001	$ \begin{vmatrix} 0.916 \pm 0.020 \\ 0.886 \pm 0.001 \\ \textbf{0.974} \pm \textbf{0.003} \end{vmatrix} $	0.346 ± 0.049 0.646 ± 0.024 0.882 ± 0.012	0.605 ± 0.149 0.805 ± 0.041 0.947 ± 0.001
сосо	ICE CRAFT FACE (Ours)	0.883 ± 0.029 0.861 ± 0.029 0.971 ± 0.013	0.632 ± 0.020 0.691 ± 0.029 0.894 ± 0.010	0.623 ± 0.086 0.874 ± 0.035 0.947 ± 0.000	$ \begin{vmatrix} 0.906 \pm 0.007 \\ 0.764 \pm 0.036 \\ \textbf{0.974} \pm \textbf{0.002} \end{vmatrix} $	0.485 ± 0.051 0.571 ± 0.026 0.905 ± 0.012	0.622 ± 0.064 0.874 ± 0.047 0.949 ± 0.000
CelebA	ICE CRAFT FACE (Ours)	0.910 ± 0.008 0.953 ± 0.067 $\textbf{0.971} \pm \textbf{0.012}$	0.365 ± 0.016 0.604 ± 0.036 0.635 ± 0.014	0.662 ± 0.087 0.901 ± 0.026 0.928 ± 0.000	$ \begin{vmatrix} 0.858 \pm 0.007 \\ 0.960 \pm 0.116 \\ \textbf{0.978} \pm \textbf{0.001} \end{vmatrix} $	0.385 ± 0.050 0.592 ± 0.070 0.649 ± 0.011	0.728 ± 0.032 0.911 ± 0.028 0.932 ± 0.001

RIT | Rochester Institute of Technology

Qualitative comparison



Qualitative comparison



Limitations and future work

1. Limitations:

- Lack of human-centered evaluation.
- b. Suitable only to CNN based architecture.

2. Future work:

- a. Extend FACE to Vision Transformers.
- b. Utilize FACE to detect and fix spurious features learned by models.

Conclusion

- 1. We demonstrate that reconstruction of activation vectors without inductive bias does not guarantee faithful explanations in concept-based methods.
- 2. We propose FACE, a faithfulness-aware variant of automatic concept extraction.
- 3. FACE ensures that model predictions remain consistent before and after concept extraction and guarantees faithfulness of output explanations.
- Empirical evaluation of ImageNet, COCO and CelebA on ResNet and MobileNet show that FACE outperforms existing methods on faithfulness and sparsity.

