Curious Causality-Seeking Agents in Open-ended Worlds

Zhiyu Zhao¹, Haoxuan Li², Haifeng Zhang^{3,4}, Jun Wang⁵, Francesco Faccio^{6,7}, Jürgen Schmidhuber^{6,7}, Mengyue Yang^{1*}

NeurIPS 2025

¹University of Bristol ²Peking University

³Institute of Automation, Chinese Academy of Sciences

⁴School of Artificial Intelligence, Chinese Academy of Sciences

⁵University College London

⁶King Abdullah University of Science and Technology (KAUST)

⁷The Swiss AI Lab, IDSIA-USI/SUPSI

Background: World Models

 World models are critical for reinforcement learning agents to simulate, plan, and predict outcomes

Background: World Models

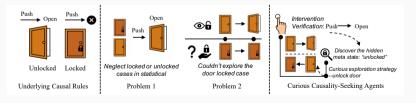
- World models are critical for reinforcement learning agents to simulate, plan, and predict outcomes
- Causal world models offer robustness by learning the underlying data-generation process

Background: World Models

- World models are critical for reinforcement learning agents to simulate, plan, and predict outcomes
- Causal world models offer robustness by learning the underlying data-generation process
- However, existing causal world models face challenges in the open-ended worlds

Motivation: The Challenge of Open-ended Worlds

- Learning a single uniform causal graph X
 - Neglecting these context-dependent changes
 - Example: "Push → Open" works when unlocked but fails when locked
 - Meta-Causal Graph (MCG): a unified structure that captures how causal relationships evolve across different states ✓
- Domain modeling requires a priori knowledge of state labels, limiting generalization to novel contexts
 - Curious Causality-Seeking Agent: actively explore interventions to uncover MCGs ✓



Meta-Causal Graph

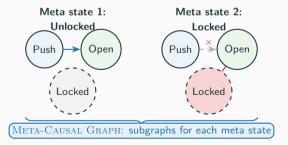
■ **Definition:** An MCG is a minimal representation that contains multiple causal subgraphs, $\{G_1, G_2, \ldots, G_k\}$.

Meta-Causal Graph

- **Definition:** An MCG is a minimal representation that contains multiple causal subgraphs, $\{G_1, G_2, \ldots, G_k\}$.
- lacksquare Each subgraph G_i corresponds to a unique **meta state** m_i .

Meta-Causal Graph

- **Definition:** An MCG is a minimal representation that contains multiple causal subgraphs, $\{G_1, G_2, \dots, G_k\}$.
- Each subgraph G_i corresponds to a unique **meta state** m_i .
- The MCG models the world as a **switching mechanism**:
 - The current meta state ${f m}$ dictates which causal subgraph ${f G}_i$ is active.
 - The active G_i then governs the transition dynamics: $P(s_{t+1}|s_t, a_t)$.



Challenge: The meta states (u) and subgraphs (\mathcal{G}_u) are both latent.

Challenge: The meta states (u) and subgraphs (\mathcal{G}_u) are both latent.

We prove identifiability in two steps:

1. Meta States (u = C(x)):

Challenge: The meta states (u) and subgraphs (\mathcal{G}_u) are both latent.

We prove identifiability in two steps:

- 1. Meta States (u = C(x)):
 - Assumption 1 (Mixed Data): Learning from mixed data (all samples pooled) recovers the union of all causal parents. $Pa_{\hat{G}}(X_j) = \bigcup_{i \in S_{\mathcal{D}}} Pa_{\mathcal{G}_i}(X_j)$
 - Theorem 1 & 2: Under this assumption, meta states are identifiable (up to permutation), even if we overparameterize (use too many clusters).

Challenge: The meta states (u) and subgraphs (\mathcal{G}_u) are both latent.

We prove identifiability in two steps:

- 1. Meta States (u = C(x)):
 - Assumption 1 (Mixed Data): Learning from mixed data (all samples pooled) recovers the union of all causal parents. $Pa_{\hat{G}}(X_j) = \bigcup_{i \in S_{\mathcal{D}}} Pa_{\mathcal{G}_i}(X_j)$
 - Theorem 1 & 2: Under this assumption, meta states are identifiable (up to permutation), even if we overparameterize (use too many clusters).
- 2. Causal Subgraphs (\mathcal{G}_u):

Challenge: The meta states (u) and subgraphs (\mathcal{G}_u) are both latent.

We prove identifiability in two steps:

- 1. Meta States (u = C(x)):
 - Assumption 1 (Mixed Data): Learning from mixed data (all samples pooled) recovers the union of all causal parents. $Pa_{\hat{G}}(X_j) = \bigcup_{i \in S_D} Pa_{\mathcal{G}_i}(X_j)$
 - Theorem 1 & 2: Under this assumption, meta states are identifiable (up to permutation), even if we overparameterize (use too many clusters).
- 2. Causal Subgraphs (\mathcal{G}_u):
 - Once meta states are separated, we need **interventions** to find edge direction.
 - Proposition 1: The subgraph is identifiable if we can intervene on single variables of an edge (e.g., do(a) to check $a \rightarrow b$).

Framework: Curious Causality-Seeking Agent

We propose a framework to learn the MCG in a continual loop, which alternates between three core components:

Framework: Curious Causality-Seeking Agent

We propose a framework to learn the MCG in a continual loop, which alternates between three core components:

1. Curiosity-Driven Interventional Exploration

 The agent uses an intrinsic reward (e.g., edge-entropy) to actively select interventions that probe uncertain causal relationships.

2. Meta-Causal Graph Discovery

• From the collected experience, the agent jointly learns the mapping to latent meta states (u = C(x)) and their corresponding causal subgraphs (\mathcal{G}_u) .

3. Continual World Model Learning

• The agent uses the discovered MCG to learn the environment's transition dynamics and continually updates its models and policy.

Core Component 1: Curiosity-Driven Exploration

Key Insight: Passive observation \rightarrow incomplete causal graphs

Solution: Active interventions guided by curiosity

Curiosity Reward: Edge-Entropy

$$\mathcal{I}_t^{\text{edge}} = \sum_{i,j} H(\hat{M}_{C(X_t)}[i,j])$$

- Prioritizes most uncertain causal edges
- Systematically probes unknown relationships
- Reveals complete causal structure

Takeaway

Active interventions discover what passive observation cannot

Core Component 2: Meta-Causal Graph Discovery

Solution: VQ-VAE discretization

- Encode state o discrete meta state u o causal subgraph \mathcal{G}_u
- Automatic discovery, no labels needed

Adaptive Codebook Fusion:

Automatically merge similar causal subgraph to maintain minimal representation

Takeaway

Hierarchical discretization discovers interpretable causal regimes

Core Component 3: Integrated Learning Objective

End-to-End Training with Multi-Task Loss:

Complete Objective Function

$$\mathcal{L} = \mathcal{L}_{\mathsf{MLE}} + \lambda_{\mathsf{sparse}} \mathcal{L}_{\mathsf{sparse}} + \lambda_{\mathsf{mask}} \mathcal{L}_{\mathsf{mask}} + \lambda_{\mathsf{quantization}} \mathcal{L}_{\mathsf{quantization}}$$

 $\mathcal{L}_{\mathsf{MLE}}$

Predict next state

 $\mathcal{L}_{\mathsf{sparse}}$

Simple graphs L1 regularization $\mathcal{L}_{\mathsf{mask}}$

Verify interventions

Refine graph

Takeaway

Multi-objective learning combines causal discovery with world model accuracy

Experimental Setup

Comprehensive Evaluation in Challenging Environments

Environments

- Chemical: Chain & Fork structures
- Magnetic: Complex physical dynamics
- Increasing noise levels (n=2,4,6)
- Out-of-distribution testing

Baselines

- GNN/MLP: Standard architectures
- NCD/FCDL: Causal discovery methods
- Modular/NPS: Modular approaches
- Transformer:Sequence modeling

Evaluation Metrics

- Prediction Accuracy: OOD generalization
- DownstreamRewards: Taskperformance
- Robustness: Varying noise levels
- Interpretability: Causal pattern analysis

Results: Out-of-Distribution Prediction

- MCG achieves highest accuracy across noise levels
- Outperforms GNN, NCD, FCDL, Transformer
 baselines
- Robust to distribution shifts

OOD Prediction Accuracy

Algorithm		Fork		Chain			
Algorithm	n=2	n=4	n=6	n=2	n=4	n=6	
GNN	36.29±3.45	25.80±3.48	21.58±3.44	29.22±3.39	23.28±4.98	20.53±6.9	
MLP	31.11 ± 1.69	30.44±2.28	32.39 ± 1.76	28.66 ± 3.65	26.52 ± 4.26	24.15±4.1	
NCD	41.60 ± 5.08	37.47±2.13	42.27 ± 1.82	40.04 ± 6.21	37.47 ± 2.98	41.19 ± 1.6	
FCDL	57.82 ± 9.90	49.29 ± 8.90	47.70 ± 6.68	50.66 ± 10.10	48.81 ± 8.91	48.05±5.8	
Modular	26.53 ± 3.45	24.73 ± 5.61	26.73 ± 8.31	25.24 ± 4.68	24.94 ± 4.81	25.09±5.9	
NPS	40.56 ± 4.61	26.81±4.37	23.02 ± 4.27	38.73 ± 2.63	27.69 ± 4.28	24.45±3.8	
CDL	35.59 ± 1.85	35.82 ± 1.40	42.22 ± 1.39	34.90 ± 1.59	36.52 ± 1.72	42.06±1.2	
GRADER	37.93 ± 1.06	38.94 ± 1.63	45.74 ± 2.25	36.82 ± 3.12	37.41 ± 2.84	43.48±4.1	
Oracle	33.87 ± 1.34	36.48 ± 1.80	42.47 ± 0.75	34.63 ± 1.78	38.31 ± 2.48	42.87±2.0	
Sandy-Mixure	31.93 ± 0.16	32.47 ± 0.0161	33.72 ± 2.11	30.08 ± 3.12	29.31 ± 5.18	27.43±2.2	
Transformer	$25.13 {\pm} 0.63$	$24.37{\pm}2.58$	$21.90 \!\pm\! 2.35$	$29.62 {\pm} 0.65$	$30.37 {\pm} 2.81$	29.78±1.0	
MCG (ours)	63.18±13.94	50.47±9.87	50.04±8.56	51.99±6.58	49.78±4.11	49.69±5.	

Results: Downstream Task Performance

- MCG yields top downstream rewards
- Strong generalization to unseen contexts
- Effective in both Chemical and Magnetic environments

Downstream Rewards

Algorithm	Chain			Fork			Magnetic
Algorithm	n=2	n=4	n=6	n=2	n=4	n=6	wagnetic
GNN	6.89±0.28	6.38±0.28	6.56±0.53	6.61±0.92	6.15±0.74	6.95±0.78	2.23 ± 0.90
MLP	7.39 ± 0.65	6.63 ± 0.58	6.78 ± 0.93	6.49 ± 0.48	5.93±0.71	6.84 ± 1.17	2.10 ± 0.22
NCD	9.60 ± 1.52	8.86 ± 0.23	10.32 ± 0.37	10.95 ± 1.63	9.11 ± 0.63	9.11 ± 0.63	2.85 ± 0.47
FCDL	11.16 ± 3.5	10.39 ± 2.84	10.62 ± 2.52	13.98 ± 2.01	13.36 ± 2.14	12.91 ± 2.40	2.77 ± 0.45
Modular	6.61 ± 0.63	7.01 ± 0.55	7.04 ± 1.07	6.05 ± 0.70	5.65±0.50	6.43±1.00	0.88 ± 0.52
NPS	6.92 ± 1.03	6.88 ± 0.79	6.80 ± 0.39	5.82 ± 0.83	5.75 ± 0.57	5.54 ± 0.80	0.91 ± 0.69
CDL	8.71 ± 0.55	8.65±0.38	10.23 ± 0.50	9.37 ± 1.33	8.23±0.40	9.50 ± 1.18	1.10 ± 0.67
Oracle	8.47 ± 0.69	8.85 ± 0.78	10.29 ± 0.37	7.83 ± 0.87	8.04±0.62	$9.66{\pm}0.21$	0.95 ± 0.55
Sandy-Mixture	6.81 ± 0.17	6.73 ± 0.20	7.07 ± 0.26	6.95 ± 0.21	6.71 ± 0.20	7.03 ± 0.40	1.63 ± 0.02
Transformer	$6.45{\pm}0.28$	6.73 ± 0.18	7.31 ± 0.33	$6.54{\pm}0.18$	6.68 ± 0.27	7.00 ± 0.39	2.13 ± 0.01
MCG(ours)	13.82±3.84	12.49±2.39	12.45±1.37	14.65±2.75	14.06±2.64	13.28±2.04	3.19 ± 0.14

Ablation Studies

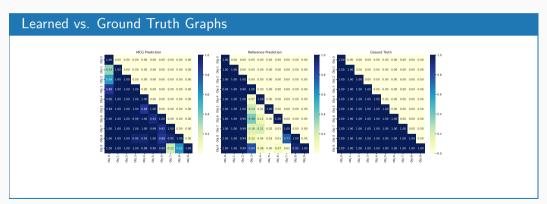
- lacktriangle No intervention verification ightarrow weaker causal alignment
- No curiosity-driven exploration \rightarrow lower exploration efficiency & accuracy
- Both components critical for robust performance

Algorithm		Fork		Chain		
, ugo. 1	n=2	n=4	n=6	n=2	n=4	n=6
MCG (wo intervention verification)	58.18±14.51	51.70±8.58	46.04±8.56	47.75±7.52	46.19±5.87	47.94±6.60
MCG (wo curiosity-driven exploration)	48.28 ± 8.15	43.48 ± 5.05	46.54 ± 3.72	50.36 ± 8.05	$50.55{\pm}6.83$	48.72±4.42
MCG (ours)	63.18 ± 13.94	50.47 ± 9.87	50.04 ± 8.56	$51.99{\pm}6.58$	49.78 ± 4.11	49.69±5.14

Analysis & Visualization

Learned Subgraphs

Closely match ground truth



Conclusion

Thank you for your listening!

