

MoFo: Empowering Long-term Time Series Forecasting with Periodic Pattern Modeling

Jiaming Ma (Presenter), Binwu Wang*, Qihe Huang, Guanjun Wang,

Pengkun Wang, Zhengyang Zhou, Yang Wang*

University of Science ang Technology of China (USTC)

Brief Introduction

> Challenges of Long-term Time Series Forecasting

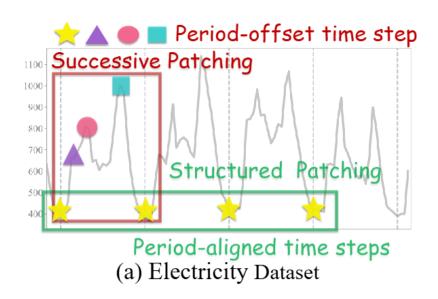
*Continuous but Low-autocorrelated Time Steps of Input Patch.

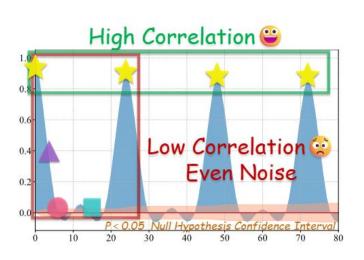
SOTA Transformer-based models adopt patching to aggregate adjacent steps for efficiency.

*Weak Inductive Bias for Periodicity.

Transformer-based models lack an properly inductive bias for periodicity.

Brief Introduction





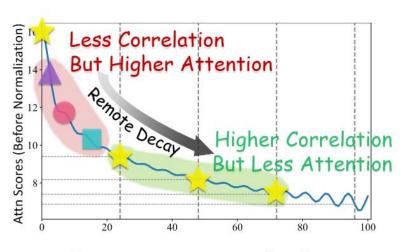
> Challenges of Long-term Time Series Forecasting

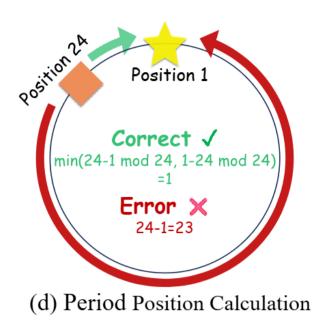
*Continuous but Low-autocorrelated Time Steps of Input Patch.

SOTA Transformer-based models adopt patching to aggregate adjacent steps for efficiency.

(b) Autocorrelation Function

Brief Introduction

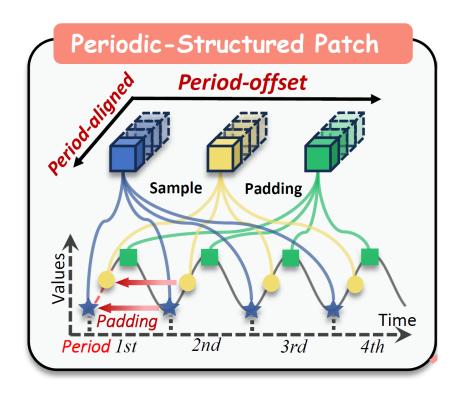



> Challenges of Long-term Time Series Forecasting

*Weak Inductive Bias for Periodicity.

Transformer-based models lack an properly inductive bias for periodicity.

(c) Sinuous Position Encoding in LTSF



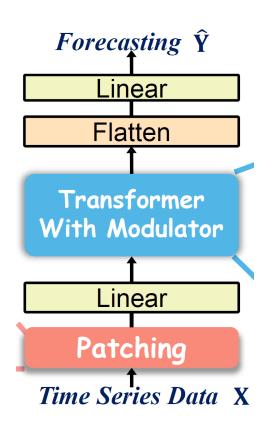
Methods: Period-structured Patch

Input Padding. Our proposed padding strategy fills incomplete periodic segments with data from adjacent periods. Specifically, we start from the current time step and move backward to delineate periods of length P, and if necessary, we prepend the input time series with the first $P - (T \mod P)$ time steps of the first complete period, as shown in Figure 2. This ensures a seamless continuation of the sequence while retaining its underlying periodic structure. As a result, the input series is extended to $\mathbf{X}_{pad} \in \mathbb{R}^{T'}$ with $T' = P * \lceil T/P \rceil$, and the padded series can be formally expressed as:

$$\mathbf{X}_{pad} = \begin{cases} \operatorname{Concat}\left(\mathbf{X}_{(T \bmod P):P}, \mathbf{X}\right), & \text{if } T \bmod P > 0, \\ \mathbf{X}, & \text{if } T \bmod P = 0. \end{cases}$$
 (1)

Sampling Patch and Unflatten. We sample time steps at periodic intervals (i.e., period-aligned time steps) from \mathbf{X}_{pad} and group them into the same patch. For example, for *i*-th patch, it can be denoted as $\overline{\mathbf{X}}^i = [x_i, x_{i+P}, \cdots, x_{i+P*\lceil T/P \rceil}] \in \mathbb{R}^{\lceil T/P \rceil}$, where x_{i+P} means the data point at the time step (i+P) in \mathbf{X}_{pad} . Then we unflatten $\overline{\mathbf{X}}$ to generate the patch-structure input \mathbf{X}_{in} ,

$$\mathbf{X}_{in} = \text{Unflatten}\left(\overline{\mathbf{X}}\right) \in \mathbb{R}^{P \times \lceil T/P \rceil}.$$
 (2)


where P is the number of patches (also equal to the period length).

Methods: Attention with Period Mask

(1) Attention with mask on period-offset dimension

$$\operatorname{Attention}\left(\mathbf{Q}, \mathbf{K}, \mathbf{V}\right) = \operatorname{Softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_h}} + \log \mathbf{M}\right)\mathbf{V},$$
 where $\mathbf{Q} = \mathbf{Z}\mathbf{W}_Q^j \in \mathbb{R}^{P \times d_h}, \mathbf{K} = \mathbf{Z}\mathbf{W}_K^j \in \mathbb{R}^{P \times d_h}, \mathbf{V} = \mathbf{Z}\mathbf{W}_V^j \in \mathbb{R}^{P \times d_h},$

(2) Period-distance mask (*non-differentiable*)

$$\mathbf{M}_{ij} = \begin{cases} 1, & \text{if } \gamma_{ij} \leq \beta, \\ 0, & \text{if } \gamma_{ij} > \beta, \end{cases} \iff \log \mathbf{M}_{ij} = \begin{cases} 0, & \text{if } \gamma_{ij} \leq \beta, \\ -\infty, & \text{if } \gamma_{ij} > \beta. \end{cases}$$

(3) Period distance calculation

$$\gamma_{ij} = \min\{(i-j) \bmod P, (j-i) \bmod P\} \in [0, |P/2|],$$

Methods: Smooth Modulator of Mask

Note: the Heaviside Step function $\mathcal{H}: \mathbb{R} \to \{0,1\}$: $\mathbf{M}_{ij} = \mathcal{H}(\beta - \gamma_{ij})$,

Theorem 1. Regulated Relaxation Function

Define a continuous differentiable function $\mathcal{S}(\cdot; \alpha, \beta) : \mathbb{R}^+ \cup \{0\} \to [0, 1]$ as follows,

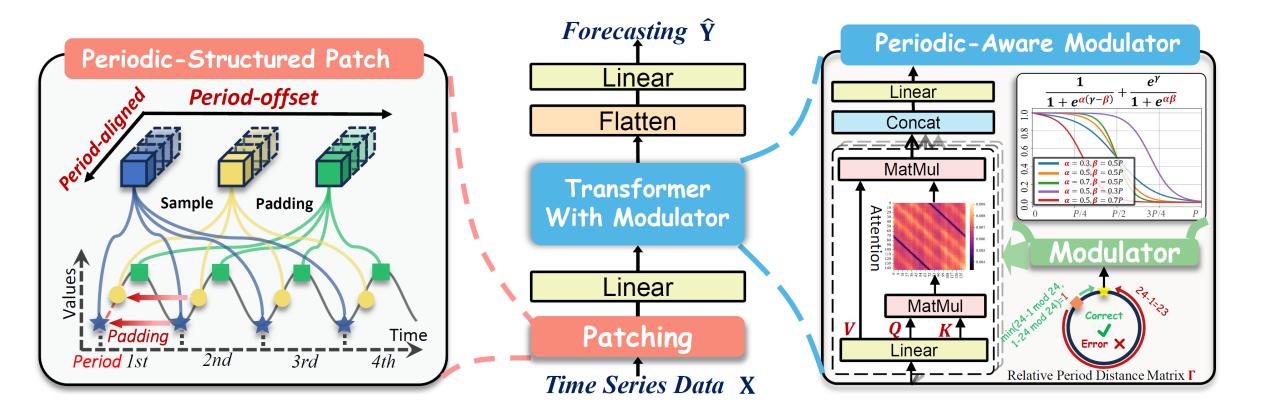
$$S(\gamma; \alpha, \beta) = \frac{1}{1 + \exp(\alpha(\gamma - \beta))} + \frac{\exp(-\gamma)}{1 + \exp(\alpha\beta)} \in [0, 1]. \tag{9}$$

where the regulated parameter $\alpha > 0$ control the gradient of attenuation and $\beta > 0$ is the distance penalty threshold. This function has following properties:

(1) $S(\gamma; \alpha, \beta)$ is the smooth approximation of $\mathcal{H}(\beta - \gamma_{ij})$ for arbitrary $\gamma \geq 0$ satisfies,

$$\mathcal{S}(0; \alpha, \beta) = 1, \quad \mathcal{S}(+\infty; \alpha, \beta) = 0, \quad \forall \alpha, \beta > 0.$$
 (10)

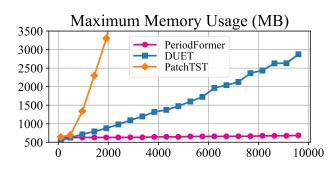
(2) The cumulative error upper bound of this smooth approximation satisfies,

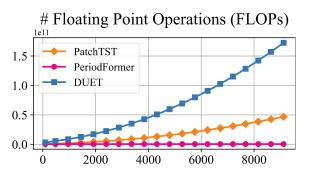

$$\int_{0}^{+\infty} |\mathcal{H}(\beta - \gamma) - \mathcal{S}(\gamma; \alpha, \beta)| \, d\gamma < \frac{2\log 2}{\alpha} + \frac{1}{1 + \exp \alpha} \to 0^{+} \quad (\alpha \to +\infty). \quad (11)$$

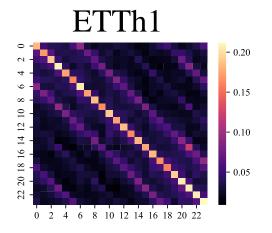
MOFO: Transformer with Modulator

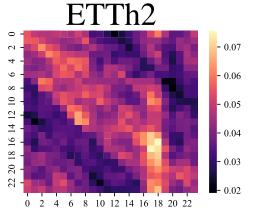
Experimental Results

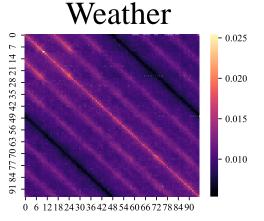
Method	Mol (Our		DUET (2025)		PDF (2024)		iTransformer (2024)		Pathformer (2024)		CycleNet (2024)		TimeMixer (2024)		PatchTST (2023)		Crossformer (2023)		DLinear (2023)	
Metric	MSE I	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96 192 336 720	0.360 0.397 0.407 0.447	0.413 0.424	0.398 0.414	0.409 <u>0.426</u>	0.392 0.418	0.414 0.435	0.424 0.449	0.440	0.408 0.438	0.415 0.434	0.404 0.430	0.417 0.429	0.413 0.438	0.430 0.450	0.409 0.431	0.425 0.444	0.409 0.433	0.435 0.438 0.457 0.514	$0.408 \\ 0.440$	0.419 0.440
2 192 336	0.273 0.327 0.361 0.379	0.373 0.405	0.332 0.353	0.374 0.397	0.339 0.374	0.382 0.406	$0.372 \\ 0.388$	0.348 0.403 0.417 0.444	0.345 0.378	0.380 0.408	0.341 0.370	0.385 0.411	0.349 0.366	0.387 0.413	0.348 0.377	$0.384 \\ 0.416$	0.723 0.740	0.603 0.607 0.628 0.882	0.387 0.490	0.423 0.487
-	0.286 0.320 0.347 0.388	0.363	0.320 0.348	0.358 0.377	$\frac{0.321}{0.354}$	0.364 0.383	$0.341 \\ 0.374$	0.396	0.337 0.374	0.363 0.384	0.332 0.366	0.365 0.386	0.335 0.365	0.372 0.386	0.329 0.362	0.368 0.390	0.374 0.413	0.367 0.410 0.432 0.613	0.336 0.367	0.366 0.386
	0.155 (0.211 (0.258 (0.342 (0.283 0.314	$\frac{0.214}{0.267}$	$\frac{0.287}{0.320}$	0.219 0.269	0.290 0.330	0.242 0.282	0.266 0.312 0.337 0.394	0.219 0.267	0.288 0.319	0.214 0.269	0.286 0.322	0.225 0.277	$0.298 \\ 0.332$	0.221 0.276	0.293 0.327	0.369 0.588	0.391 0.416 0.600 0.612	0.224 0.277	$0.304 \\ 0.337$
Meather 192 336 720	0.141 (0.186 (0.233 (0.312 (0.	0.230 0.272	0.188	0.231 0.268	0.193 0.245	$0.240 \\ 0.280$	$0.200 \\ 0.252$	0.207 0.248 0.287 0.336	0.191 0.243	0.235 0.274	0.213 0.262	0.259 0.291	0.192 0.247	$0.243 \\ 0.284$	0.191 0.242	0.239 0.279	0.195 0.254	0.210 0.261 0.319 0.385	0.216 0.258	0.273 0.307
	0.169 (0.177 (0.186 (0.193 (0.231	$\frac{0.187}{0.199}$	0.207 0.213	$0.199 \\ 0.208$	0.257 0.269	0.193 0.203	0.257 0.266	0.196 0.195	$\frac{0.220}{0.220}$	0.221 0.233	0.261 0.269	0.201 0.190	0.259 0.256	0.204 0.212	0.302 0.293	0.208 0.212	0.208 0.226 0.239 0.256	0.234	0.282 0.295
	0.122 (0.140 (0.157 (0.191 (0.234 0.252	0.145 0.163	$\frac{0.235}{0.255}$	0.147 0.165	0.242 0.260	0.154 0.169	0.265	0.157 0.170	0.253 0.267	$\frac{0.144}{0.161}$	0.239 0.253	0.168 0.189	0.269 0.291	0.158 0.168	0.260 0.267	0.146 0.165	0.231 0.243 0.264 0.314	0.154 0.169	0.251 0.268
	0.362 0.379 0.390 0.424	0.254 0.258	0.383 0.395	0.249 0.259	$\frac{0.382}{0.393}$	0.261 0.268	0.384 0.396	0.277	0.405 0.424	0.257 0.265	0.406 0.425	0.280 0.291	0.400 0.407	0.272 0.272	0.386 0.396	0.269 0.275	0.503 0.505	0.276	0.407 0.417	0.280 0.286

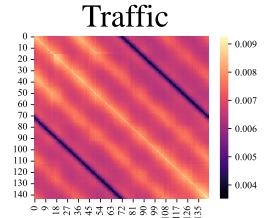

Experimental Results




(1) Efficiency on extremely long input series.







(2) Visualization of attention logits

♦ Connection & Cooperation

Available Code: https://github.com/PoorOtterBob/MoFo.

Contact Emails: <u>JiamingMa@mail.ustc.edu.cn</u>.

Personal Websit: https://poorotterbob.github.io/.

❖ WeChat:

See you San Diego!!!