

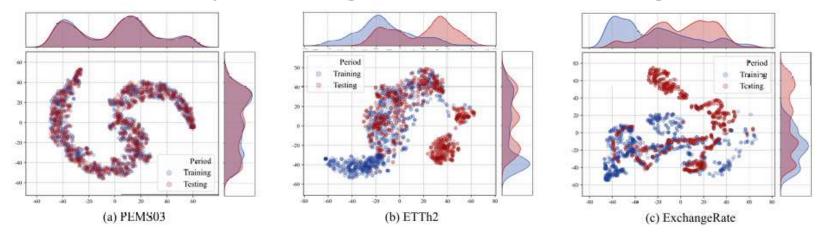
TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting

Mingyuan Xia*1, Chunxu Zhang*1, Zijian Zhang†1, Hao Miao2, Qidong Liu3,

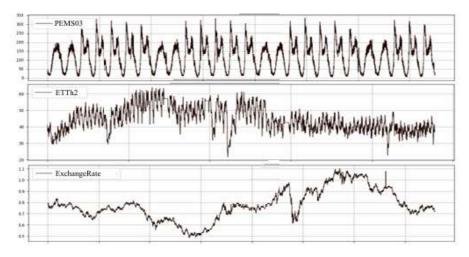
Yuanshao Zhu⁴, Bo Yang¹

- 1. Jilin University
- 2. The Hong Kong Polytechnic University
 - 3. Xi'an Jiaotong University
 - 4. City University of Hong Kong

Outline


- Introduction
 - Research Background
 - Motivation
- Framework
- Experiments
- Conclusion

Introduction

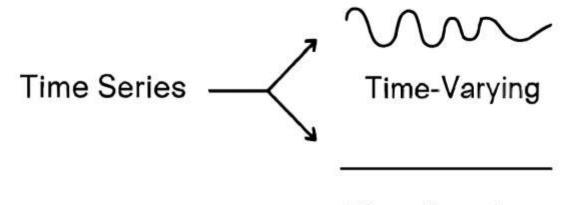

- Temporal non-stationarity challenges stable forecasting
- Time series can be decomposed into two complementary parts
- Existing methods conflate static and dynamic factors
- Goal: disentangle time-invariant and time-varying patterns for robustness

Research Background

Temporal non-stationarity challenges stable forecasting

Visualization of data distribution based on t-SNE and kernel density estimation

Distinct temporal patterns in multiple MTS datasets

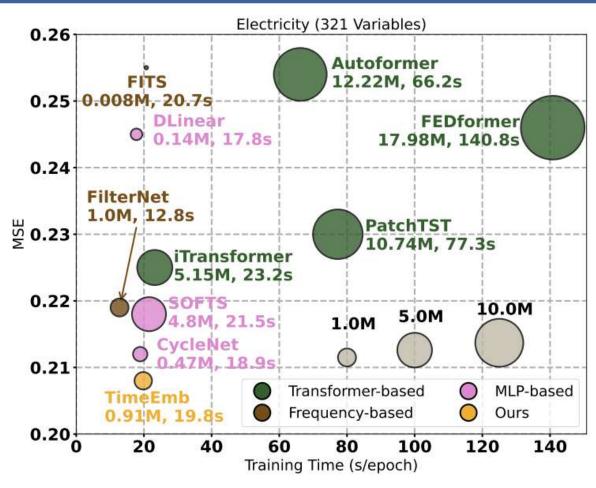

Research Background

Every time series can be decomposed into two complementary parts:

 A time-invariant component that reflects long-term stable patterns, and

 A time-varying component that represents short-term dynamics and fluctuations

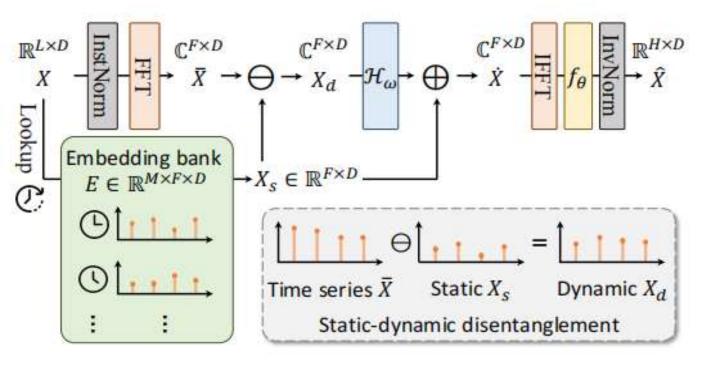
Time Series Decomposition

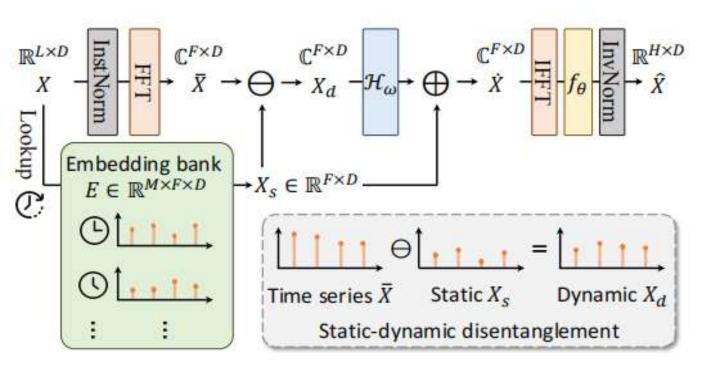


Time-Invariant

Motivation

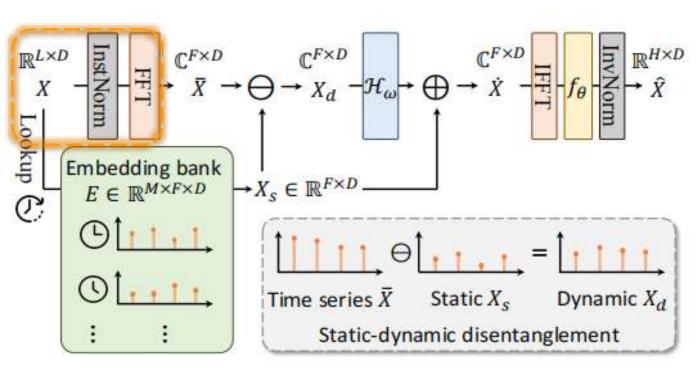
- Existing methods mix static and dynamic components:
 - Decomposition methods like DLinear rely on local statistical information but miss global patterns
 - Transformer-based models like iTransformer treat the entire sequence as one, confusing short-term noise with long-term trends
 - Frequency-based methods like FilterNet filter signals, but can't flexibly handle both static and dynamic factors

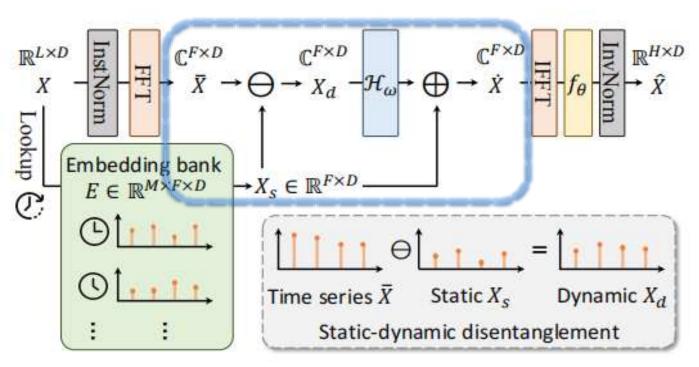

Motivation



 Our TimeEmb separates these components, preserving long-term patterns while capturing short-term changes, improving accuracy with high efficiency

Outline

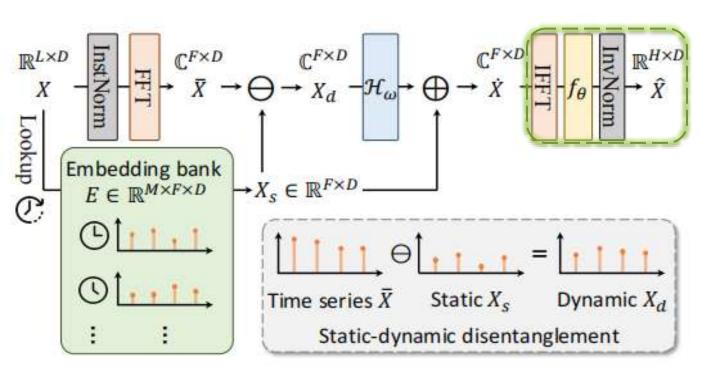

- Introduction
- Framework
 - Overview
 - Domain Transformation
 - Static Component via Embedding Bank
 - Dynamic Component via Frequency Filtering
 - Prediction Layer and Optimization Objective
- Experiments
- Conclusion


Benefits of Frequency Representation

- ✓ Reveal the underlying periodic structures hidden in time domain
- ✓ Provide a clearer perspective for disentanglement
- ✓ Explicitly separate periodic patterns and dynamic noise

Domain Transformation Layer

✓ Tranform X to frequecy domain \overline{X} via Fast Fourier Transform (FFT)



Domain Transformation Layer

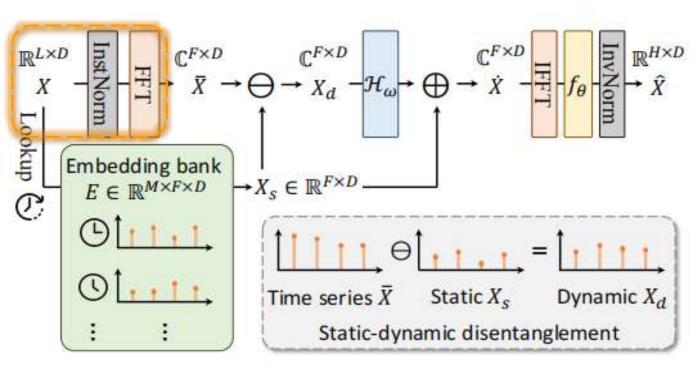
✓ Tranform X to frequecy domain \overline{X} via Fast Fourier Transform (FFT)

Static-dynamic Disentanglement Layer

- ✓ Introduce a learnable embedding bank to retrieve the static component
- ✓ Process the dynamic component via frequency filtering

Domain Transformation Layer

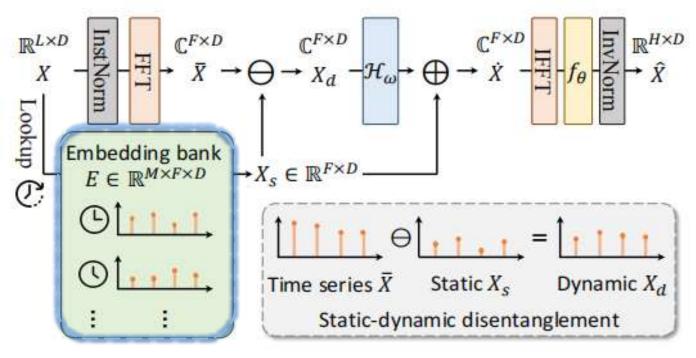
✓ Tranform X to frequecy domain \overline{X} via Fast Fourier Transform (FFT)


Static-dynamic Disentanglement Layer

- ✓ Introduce a learnable embedding bank to retrieve the static component
- ✓ Process the dynamic component via frequency filtering

Prediction Layer

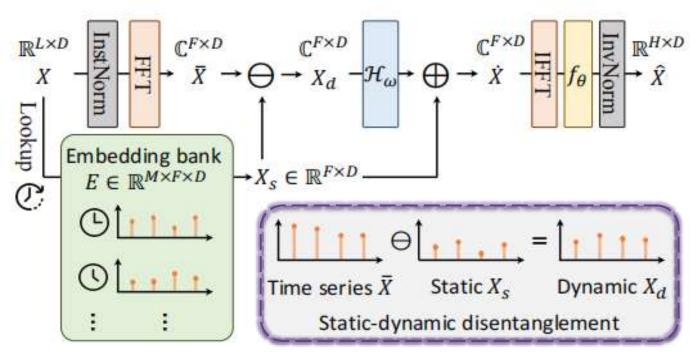
✓ Generate the final prediction


Domain Transformation Layer

1 Domain Transformation

Transfer the time series from time domain to frequency domain:

$$\overline{\boldsymbol{X}}[k] = \sum_{n=0}^{L-1} \boldsymbol{X}[n] e^{-j2\pi kn/L}, \quad k = 0, 1, ..., F-1$$
 imaginary unit

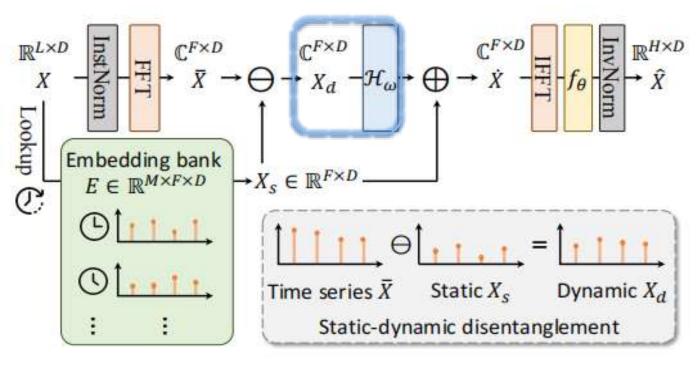

2 Static Component via Embedding Bank

Retrieve the corresponding embedding:

$$oldsymbol{X}_s = oldsymbol{E}[t_{last}] \mod M$$
time index of X size of Emb bank

Each embedding in E corresponds to a specific time slot

This bank captures persistent global patterns that are consistent across the entire dataset

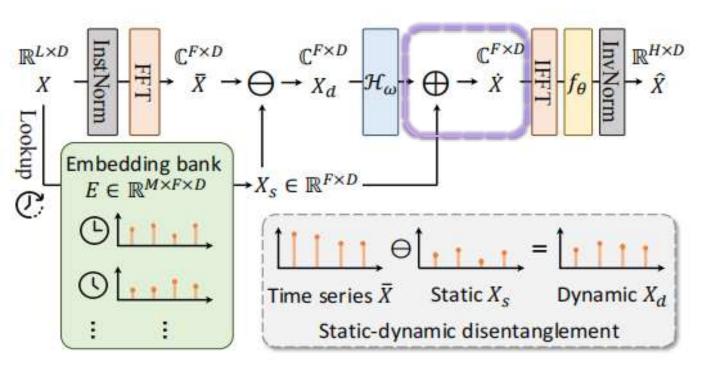

2 Static Component via Embedding Bank

Separate the embedding X_S from time series \overline{X} :

$$X_d = \overline{X} - X_s$$
.

Disentangle the time-varying and timeinvariant components

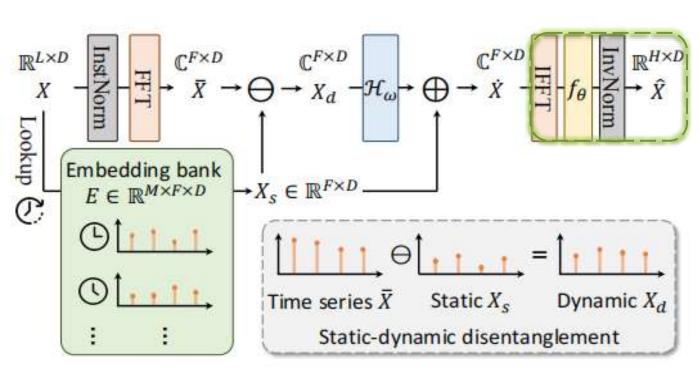
Enable explicit modeling of both stable and changing patterns


3 Dynamic Component via Freq Filtering

Reweight different frequency bands to adapt to distribution shifts:

$$\mathcal{H}_{m{\omega}}(m{X}_d)[k] = m{X}_d[k] \odot m{\omega}[k]$$
 modulation vector

Provide practical flexibility for modeling diverse temporal dynamics


4 Reconstruct the Full Representation

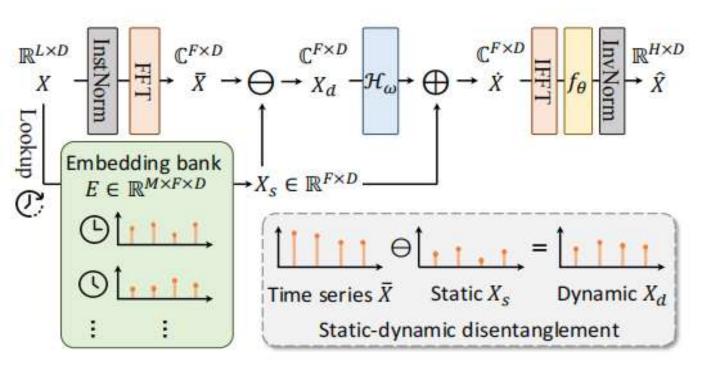
Add back the static component X_s :

$$\dot{\boldsymbol{X}} = \mathcal{H}_{\boldsymbol{\omega}}(\boldsymbol{X}_d) + \boldsymbol{X}_s$$

Prediction Layer

5 The Projection Layer

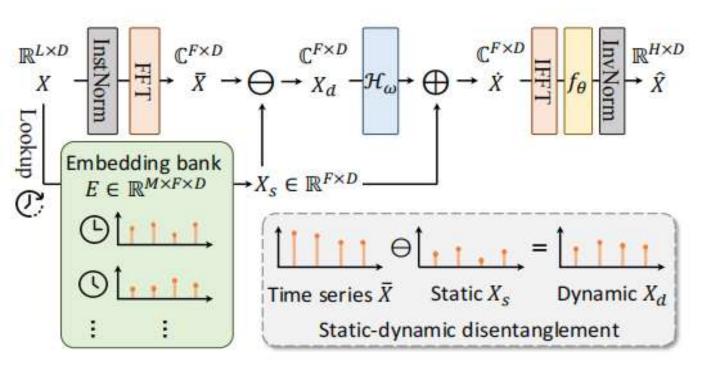
$$f_{\boldsymbol{\theta}}(\boldsymbol{X}) = \boldsymbol{W}_2(\text{ReLU}(\boldsymbol{W}_1\boldsymbol{X} + \boldsymbol{b}_1)) + \boldsymbol{b}_2$$


Generate the final prediction:

$$\widehat{m{X}} = \underline{\mathbf{InvNorm}}(f_{m{ heta}}(\underline{m{\dot{X}}}))$$
Inverse Instance Inverse Fast Fourier Normalization Transformation

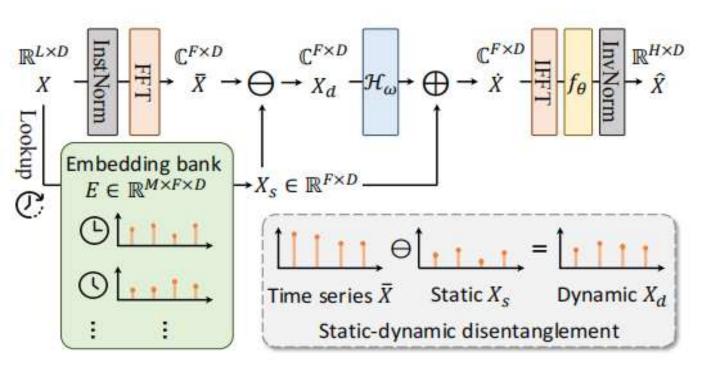
6 Objective Function

$$\mathcal{L}(\widehat{\boldsymbol{X}}, \boldsymbol{Y}) = \alpha \mathsf{MAE}(\mathsf{FFT}(\widehat{\boldsymbol{X}}), \mathsf{FFT}(\boldsymbol{Y})) + (1 - \alpha) \mathsf{MSE}(\widehat{\boldsymbol{X}}, \boldsymbol{Y})$$


Pipeline

Embedding Bank

- ✓ Learns global, time-invariant patterns across the dataset
- ✓ No predefined cycles or assumptions
- ✓ Captures stable temporal structures flexibly


Pipeline

Frequency Filtering

- ✓ Adaptive reweighting of frequency components
- ✓ Models dynamic variations effectively
- ✓ Complements static embedding for robust forecasting

Pipeline

Framework Summary

- ✓ A frequency-domain disentanglement framework
- ✓ Separately models static and dynamic components
- Achieves robust, efficient, and interpretable forecasting

Outline

- Introduction
- Framework
- Experiments
 - Experimental Settings
 - Overall Performance
 - Compatibility Analysis
 - Visualization
 - Ablation Study
 - Hyper-Parameter Analysis
- Conclusion

Experimental Settings

Dataset

- ETTs: ETTh1, ETTh2, ETTm1, ETTm2
- Electricity
- Weather
- Traffic

Datasets	ETTh1	ETTh2	ETTm1	ETTm2	Electricity	Weather	Traffic
Channels	7	7	7	7	321	21	862
Timesteps	17420	17420	69680	69680	26304	52696	17544
Frequency	Hourly	Hourly	15min	15min	Hourly	10min	Hourly
Domain	Electricity	Electricity	Electricity	Electricity	Electricity	Weather	Traffic

Experimental Settings

Baselines

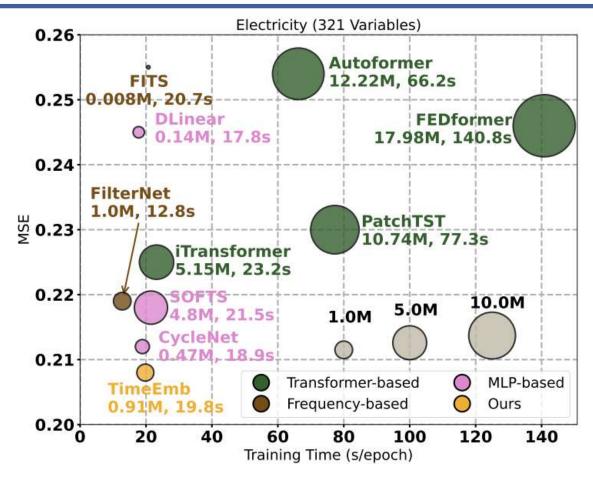
- Frequency-based models:
 - FreTS(NeurIPS 2023), FilterNet(NeurIPS 2024), FITS(ICLR 2024)
- MLP-based models:
 - DLinear(AAAI 2023), CycleNet(NeurIPS 2024)
- Transformer-based Models:
 - PatchTST(ICLR 2023), iTransformer(ICLR 2024), Fredformer(KDD 2024)

М	odel	Time (ou			leNet 124		omier 24	Filte 20			former 124		nTST 123	FT 20	TS 24	Fre 20	TS 23		near 123
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTP1	96	0.366±0.001	0,387±0.001	0.378	0.391	0.373	0.392	0.375	0.394	0.386	0.405	0.394	0.406	0.386	0.396	0.395	0.407	0.386	0.400
	192	0.417±0.001	0,416±0.001	0.426	0.419	0.433	0.420	0.436	0.422	0.441	0.436	0.440	0.435	0.436	0.423	0.448	0.440	0.437	0.432
	336	0.457±0.001	0,436±0.001	0.464	0.439	0.470	0.437	0.476	0.443	0.487	0.458	0.491	0.462	0.478	0.444	0.499	0.472	0.481	0.459
	720	0.459±0.002	0,460±0.001	0.461	0.460	0.467	0.456	0.474	0.469	0.503	0.491	0.487	0.479	0.502	0.495	0.558	0.532	0.519	0.516
	avg	0.425±0.001	0,425±0.001	0.432	0.427	0.435	0.426	0.440	0.432	0.454	0.447	0.453	0.446	0.451	0.440	0.475	0.463	0.456	0.452
ETTh2	96	0.277±0.001	0.328±0.001	0.285	0.335	0.293	0.342	0.292	0.343	0.297	0.349	0.288	0.340	0.295	0.350	0.309	0.364	0.333	0.387
	192	0.356±0.001	0.379±0.001	0.373	0.391	0.371	0.389	0.369	0.395	0.380	0.400	0.376	0.395	0.381	0.396	0.395	0.425	0.477	0.476
	336	0.400±0.002	0.417±0.001	0.421	0.433	0.382	0.409	0.420	0.432	0.428	0.432	0.440	0.451	0.426	0.438	0.462	0.467	0.594	0.541
	720	0.416±0.001	0.437±0.002	0.453	0.458	0.415	0.434	0.430	0.446	0.427	0.445	0.436	0.453	0.431	0.446	0.721	0.604	0.831	0.657
	avg	0.362±0.001	0.390±0.001	0.383	0.404	<u>0.365</u>	0.393	0.378	0.404	0.383	0.407	0.385	0.410	0.383	0.408	0.472	0.465	0.559	0.515
ETTmt	96	0.304±0.001	0.343±0.001	0.319	0.360	0.326	0.361	0.318	0,358	0.334	0.368	0.329	0.365	0,355	0.375	0.335	0.372	0.345	0.372
	192	0.354±0.001	0.373±0.001	0.360	0.381	0.363	0.380	0.364	0,383	0.377	0.391	0.380	0.394	0.392	0.393	0.388	0.401	0.380	0.389
	336	0.379±0.001	0.393±0.001	0.389	<u>0.403</u>	0.395	0.403	0.396	0,406	0.426	0.420	0.400	0.410	0.424	0.414	0.421	0.426	0.413	0.413
	720	0.435±0.001	0.428±0.001	0.447	0.441	0.453	0.438	0.456	0,444	0.491	0.459	0.475	0.453	0.487	0.449	0.486	0.465	0.474	0.453
	avg	0.368±0.001	0.384±0.001	0.379	0.396	0.384	0.395	0.384	0,398	0.407	0.410	0.396	0.406	0.415	0.408	0.408	0.416	0.403	0.407
ETTm2	96	0.163±0.001	0.242±0.001	0.163	0.246	0.177	0.259	0.174	0.257	0.180	0.264	0.184	0.264	0.183	0.266	0.189	0.277	0.193	0.292
	192	0.226±0.001	0.285±0.001	0.229	0.290	0.243	0.301	0.240	0.300	0.250	0.309	0.246	0.306	0.247	0.305	0.258	0.326	0.284	0.362
	336	0.286±0.001	0.324±0.001	0.284	0.327	0.302	0.340	0.297	0.339	0.311	0.348	0.308	0.346	0.307	0.342	0.343	0.390	0.369	0.427
	720	0.383±0.001	0.381±0.001	0.389	0.391	0.397	0.396	0.392	0.393	0.412	0.407	0.409	0.402	0.407	0.399	0.495	0.480	0.554	0.522
	avg	0.265±0.001	0.308±0.001	0.266	0.314	0.279	0.324	0.276	0.322	0.288	0.332	0.287	0.330	0.286	0.328	0.321	0.368	0.350	0.401
Weather	96	0.150±0.001	0.190±0.001	0.158	0.203	0.163	0.207	0.162	0.207	0.174	0.214	0.176	0.217	0.166	0.213	0.174	0.208	0.196	0.255
	192	0.200±0.001	0.238±0.001	0.207	0.247	0.211	0.251	0.210	0.250	0.221	0.254	0.221	0.256	0.213	0.254	0.219	0.250	0.237	0.296
	336	0.259±0.001	0.282±0.001	0.262	0.289	0.267	0.292	0.265	0.290	0.278	0.296	0.275	0.296	0.269	0.294	0.273	0.290	0.283	0.335
	720	0.339±0.001	0.336±0.001	0.344	0.344	0.343	0.341	0.342	0.340	0.358	0.347	0.352	0.346	0.346	0.343	0.334	0.332	0.345	0.381
	avg	0.237±0.001	0.262±0.001	0.243	0.271	0.246	0.272	0.245	0.272	0.258	0.278	0.256	0.279	0.249	0.276	0.250	0.270	0.265	0.317
Electricity	96	0.136±0.001	0.231±0.001	0.136	0.229	0.147	0.241	0.147	0.245	0.148	0.240	0.164	0.251	0.200	0.278	0.176	0.258	0.197	0.282
	192	0.153±0.001	0.246±0.001	0.152	0.244	0.165	0.258	0.160	0.250	0.162	0.253	0.173	0.262	0.200	0.280	0.175	0.262	0.196	0.285
	336	0.170±0.001	0.264±0.001	0.170	0.264	0.177	0.273	0.173	0.267	0.178	0.269	0.190	0.279	0.214	0.295	0.185	0.278	0.209	0.301
	720	0.208±0.001	0.297±0.001	0.212	0.299	0.213	0.304	0.210	0.309	0.225	0.317	0.230	0.313	0.255	0.327	0.220	0.315	0.245	0.333
	avg	0.167±0.001	0.260±0.001	0.168	0.259	0.175	0.269	0.173	0.268	0.178	0.270	0.189	0.276	0.217	0.295	0.189	0.278	0.212	0.300
Traffic	96	0.432±0.002	0.279±0.001	0.458	0.296	0.406	0.277	0.430	0.294	0.395	0.268	0.427	0.272	0.651	0.391	0.593	0.378	0.650	0.396
	192	0.442±0.001	0.289±0.001	0.457	0.294	0.426	0.290	0.452	0.307	0.417	0.276	0.454	0.289	0.602	0.363	0.595	0.377	0.598	0.370
	336	0.456±0.002	0.295±0.002	0.470	0.299	0.432	0.281	0.470	0.316	0.433	0.283	0.450	0.282	0.609	0.366	0.609	0.385	0.605	0.373
	720	0.487±0.003	0.311±0.001	0.502	0.314	0.463	0.300	0.498	0.323	0.467	0.302	0.484	0.301	0.647	0.385	0.673	0.418	0.645	0.394
	avg	0.454±0.002	0.293±0.001	0.472	0.301	0.431	0.287	0.463	0.310	0.428	0.282	0.454	0.286	0.627	0.376	0.618	0.390	0.625	0.383

TimeEmb consistently outperforms strong baselines across diverse datasets

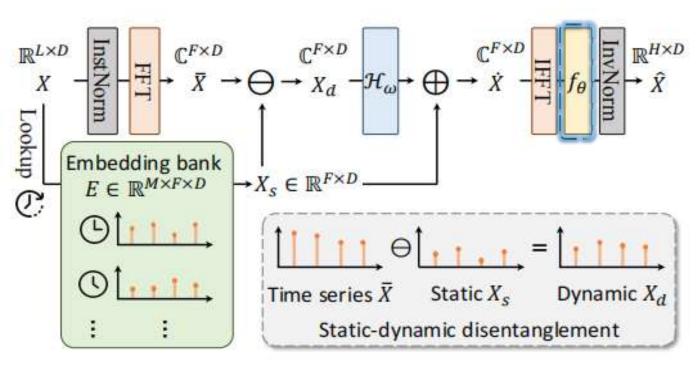
M	odel	77.70	Emb irs)	Cyc 20	leNet 124		omer 24	Filte 20	rNet 124		former 124		hTST 023		TS 124		rTS 123		near 123
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETIPI	96	0.366±0.001	0.387±0.001	0.378	0.391	0.373	0.392	0.375	0.394	0.386	0.405	0.394	0.406	0.386	0.396	0.395	0.407	0.386	0.400
	192	0.417±0.001	0.416±0.001	0.426	0.419	0.433	0.420	0.436	0.422	0.441	0.436	0.440	0.435	0.436	0.423	0.448	0.440	0.437	0.432
	336	0.457±0.001	0.436±0.001	0.464	0.439	0.470	0.437	0.476	0.443	0.487	0.458	0.491	0.462	0.478	0.444	0.499	0.472	0.481	0.459
	720	0.459±0.002	0.460±0.001	0.461	0.460	0.467	0.456	0.474	0.469	0.503	0.491	0.487	0.479	0.502	0.495	0.558	0.532	0.519	0.516
	avg	0.425±0.001	0.425±0.001	0.432	0.427	0.435	0.426	0.440	0.432	0.454	0.447	0.453	0.446	0.451	0.440	0.475	0.463	0.456	0.452
ETTh2	96	0.277±0.001	0.328±0.001	0.285	0.335	0.293	0.342	0.292	0.343	0.297	0.349	0.288	0.340	0.295	0.350	0.309	0.364	0.333	0.387
	192	0.356±0.001	0.379±0.001	0.373	0.391	0.371	0.389	0.369	0.395	0.380	0.400	0.376	0.395	0.381	0.396	0.395	0.425	0.477	0.476
	336	0.400±0.002	0.417±0.001	0.421	0.433	0.382	0.409	0.420	0.432	0.428	0.432	0.440	0.451	0.426	0.438	0.462	0.467	0.594	0.541
	720	0.416±0.001	0.437±0.002	0.453	0.458	0.415	0.434	0.430	0.446	0.427	0.445	0.436	0.453	0.431	0.446	0.721	0.604	0.831	0.657
	avg	0.362±0.001	0.390±0.001	0.383	0.404	0.365	0.393	0.378	0.404	0.383	0.407	0.385	0.410	0.383	0.408	0.472	0.465	0.559	0.515
ETTm1	96	0.304±0.001	0.343±0.001	0.319	0.360	0.326	0.361	0.318	0.358	0.334	0.368	0.329	0.365	0,355	0.375	0.335	0.372	0.345	0.372
	192	0.354±0.001	0.373±0.001	0.360	0.381	0.363	0.380	0.364	0.383	0.377	0.391	0.380	0.394	0,392	0.393	0.388	0.401	0.380	0.389
	336	0.379±0.001	0.393±0.001	0.389	<u>0.403</u>	0.395	0.403	0.396	0.406	0.426	0.420	0.400	0.410	0,424	0.414	0.421	0.426	0.413	0.413
	720	0.435±0.001	0.428±0.001	0.447	0.441	0.453	0.438	0.456	0.444	0.491	0.459	0.475	0.453	0,487	0.449	0.486	0.465	0.474	0.453
	avg	0.368±0.001	0.384±0.001	0.379	0.396	0.384	0.395	0.384	0.398	0.407	0.410	0.396	0.406	0,415	0.408	0.408	0.416	0.403	0.407
ETTm2	96	0.163±0.001	0.242±0.001	0.163	0.246	0.177	0.259	0.174	0.257	0.180	0.264	0.184	0.264	0.183	0.266	0.189	0.277	0.193	0.292
	192	0.226±0.001	0.285±0.001	0.229	0.290	0.243	0.301	0.240	0.300	0.250	0.309	0.246	0.306	0.247	0.305	0.258	0.326	0.284	0.362
	336	0.286±0.001	0.324±0.001	0.284	0.327	0.302	0.340	0.297	0.339	0.311	0.348	0.308	0.346	0.307	0.342	0.343	0.390	0.369	0.427
	720	0.383±0.001	0.381±0.001	0.389	0.391	0.397	0.396	0.392	0.393	0.412	0.407	0.409	0.402	0.407	0.399	0.495	0.480	0.554	0.522
	avg	0.265±0.001	0.308±0.001	0.266	0.314	0.279	0.324	0.276	0.322	0.288	0.332	0.287	0.330	0.286	0.328	0.321	0.368	0.350	0.401
Weather	96	0.150±0.001	0.190±0.001	0.158	0.203	0.163	0.207	0.162	0.207	0.174	0.214	0.176	0.217	0.166	0.213	0.174	0.208	0.196	0.255
	192	0.200±0.001	0.238±0.001	0.207	0.247	0.211	0.251	0.210	0.250	0.221	0.254	0.221	0.256	0.213	0.254	0.219	0.250	0.237	0.296
	336	0.259±0.001	0.282±0.001	0.262	0.289	0.267	0.292	0.265	0.290	0.278	0.296	0.275	0.296	0.269	0.294	0.273	0.290	0.283	0.335
	720	0.339±0.001	0.336±0.001	0.344	0.344	0.343	0.341	0.342	0.340	0.358	0.347	0.352	0.346	0.346	0.343	0.334	0.332	0.345	0.381
	avg	0.237±0.001	0.262±0.001	0.243	0.271	0.246	0.272	0.245	0.272	0.258	0.278	0.256	0.279	0.249	0.276	0.250	0.270	0.265	0.317
Electricity	96	0.136±0.001	0.231±0.001	0.136	0.229	0.147	0.241	0.147	0.245	0.148	0.240	0.164	0.251	0.200	0.278	0.176	0.258	0.197	0.282
	192	0.153±0.001	0.246±0.001	0.152	0.244	0.165	0.258	0.160	0.250	0.162	0.253	0.173	0.262	0.200	0.280	0.175	0.262	0.196	0.285
	336	0.170±0.001	0.264±0.001	0.170	0.264	0.177	0.273	0.173	0.267	0.178	0.269	0.190	0.279	0.214	0.295	0.185	0.278	0.209	0.301
	720	0.208±0.001	0.297±0.001	0.212	0.299	0.213	0.304	0.210	0.309	0.225	0.317	0.230	0.313	0.255	0.327	0.220	0.315	0.245	0.333
	avg	0.167±0.001	0.260±0.001	0.168	0.259	0.175	0.269	0.173	0.268	0.178	0.270	0.189	0.276	0.217	0.295	0.189	0.278	0.212	0.300
Traffic	96	0.432±0.002	0.279±0.001	0.458	0.296	0.406	0.277	0.430	0.294	0.395	0.268	0.427	0.272	0.651	0.391	0.593	0.378	0.650	0.396
	192	0.442±0.001	0.289±0.001	0.457	0.294	0.426	0.290	0.452	0.307	0.417	0.276	0.454	0.289	0.602	0.363	0.595	0.377	0.598	0.370
	336	0.456±0.002	0.295±0.002	0.470	0.299	0.432	0.281	0.470	0.316	0.433	0.283	0.450	0.282	0.609	0.366	0.609	0.385	0.605	0.373
	720	0.487±0.003	0.311±0.001	0.502	0.314	0.463	0.300	0.498	0.323	0.467	0.302	0.484	0.301	0.647	0.385	0.673	0.418	0.645	0.394
	avg	0.454±0.002	0.293±0.001	0.472	0.301	0.431	0.287	0.463	0.310	0.428	0.282	0.454	0.286	0.627	0.376	0.618	0.390	0.625	0.383

TimeEmb surpasses disentanglement-based baselines by offering more expressive and flexible decomposition


М	odel	77.70	Emb irs)		leNet 124		omser 124		rNet 124		former 124		hTST 023		TS 124		TS 123		near 123
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTP	96	0.366±0.001	0.387±0.001	0.378	0.391	0.373	0.392	0.375	0.394	0.386	0.405	0.394	0.406	0.386	0.396	0.395	0.407	0.386	0.400
	192	0.417±0.001	0.416±0.001	0.426	0.419	0.433	0.420	0.436	0.422	0.441	0.436	0.440	0.435	0.436	0.423	0.448	0.440	0.437	0.432
	336	0.457±0.001	0.436±0.001	0.464	0.439	0.470	0.437	0.476	0.443	0.487	0.458	0.491	0.462	0.478	0.444	0.499	0.472	0.481	0.459
	720	0.459±0.002	0.460±0.001	0.461	0.460	0.467	0.456	0.474	0.469	0.503	0.491	0.487	0.479	0.502	0.495	0.558	0.532	0.519	0.516
	avg	0.425±0.001	0.425±0.001	0.432	0.427	0.435	0.426	0.440	0.432	0.454	0.447	0.453	0.446	0.451	0.440	0.475	0.463	0.456	0.452
ETTh2	96	0.277±0.001	0.328±0.001	0.285	0.335	0.293	0.342	0.292	0.343	0.297	0.349	0.288	0.340	0.295	0.350	0.309	0.364	0.333	0.387
	192	0.356±0.001	0.379±0.001	0.373	0.391	0.371	0.389	0.369	0.395	0.380	0.400	0.376	0.395	0.381	0.396	0.395	0.425	0.477	0.476
	336	0.400±0.002	0.417±0.001	0.421	0.433	0.382	0.409	0.420	0.432	0.428	0.432	0.440	0.451	0.426	0.438	0.462	0.467	0.594	0.541
	720	0.416±0.001	0.437±0.002	0.453	0.458	0.415	0.434	0.430	0.446	0.427	0.445	0.436	0.453	0.431	0.446	0.721	0.604	0.831	0.657
	avg	0.362±0.001	0.390±0.001	0.383	0.404	<u>0.365</u>	0.393	0.378	0.404	0.383	0.407	0.385	0.410	0.383	0.408	0.472	0.465	0.559	0.515
ETTmt	96	0.304±0.001	0.343±0.001	0.319	0.360	0.326	0.361	0.318	0,358	0.334	0.368	0.329	0.365	0.355	0.375	0.335	0,372	0.345	0.372
	192	0.354±0.001	0.373±0.001	0.360	0.381	0.363	0.380	0.364	0,383	0.377	0.391	0.380	0.394	0.392	0.393	0.388	0,401	0.380	0.389
	336	0.379±0.001	0.393±0.001	0.389	<u>0.403</u>	0.395	0.403	0.396	0,406	0.426	0.420	0.400	0.410	0.424	0.414	0.421	0,426	0.413	0.413
	720	0.435±0.001	0.428±0.001	0.447	0.441	0.453	0.438	0.456	0,444	0.491	0.459	0.475	0.453	0.487	0.449	0.486	0,465	0.474	0.453
	avg	0.368±0.001	0.384±0.001	0.379	0.396	0.384	0.395	0.384	0,398	0.407	0.410	0.396	0.406	0.415	0.408	0.408	0,416	0.403	0.407
ETTm2	96	0.163±0.001	0.242±0.001	0.163	0.246	0.177	0.259	0.174	0.257	0.180	0.264	0.184	0.264	0.183	0.266	0.189	0.277	0.193	0.292
	192	0.226±0.001	0.285±0.001	0.229	0.290	0.243	0.301	0.240	0.300	0.250	0.309	0.246	0.306	0.247	0.305	0.258	0.326	0.284	0.362
	336	0.286±0.001	0.324±0.001	0.284	0.327	0.302	0.340	0.297	0.339	0.311	0.348	0.308	0.346	0.307	0.342	0.343	0.390	0.369	0.427
	720	0.383±0.001	0.381±0.001	0.389	0.391	0.397	0.396	0.392	0.393	0.412	0.407	0.409	0.402	0.407	0.399	0.495	0.480	0.554	0.522
	avg	0.265±0.001	0.308±0.001	0.266	0.314	0.279	0.324	0.276	0.322	0.288	0.332	0.287	0.330	0.286	0.328	0.321	0.368	0.350	0.401
Weather	96	0.150±0.001	0.190±0.001	0.158	0.203	0.163	0.207	0.162	0.207	0.174	0.214	0.176	0.217	0.166	0.213	0.174	0.208	0.196	0.255
	192	0.200±0.001	0.238±0.001	0.207	0.247	0.211	0.251	0.210	0.250	0.221	0.254	0.221	0.256	0.213	0.254	0.219	0.250	0.237	0.296
	336	0.259±0.001	0.282±0.001	0.262	0.289	0.267	0.292	0.265	0.290	0.278	0.296	0.275	0.296	0.269	0.294	0.273	0.290	0.283	0.335
	720	0.339±0.001	0.336±0.001	0.344	0.344	0.343	0.341	0.342	0.340	0.358	0.347	0.352	0.346	0.346	0.343	0.334	0.332	0.345	0.381
	avg	0.237±0.001	0.262±0.001	0.243	0.271	0.246	0.272	0.245	0.272	0.258	0.278	0.256	0.279	0.249	0.276	0.250	0.270	0.265	0.317
Electricity	96	0.136±0.001	0.231±0.001	0.136	0.229	0.147	0.241	0.147	0.245	0.148	0.240	0.164	0.251	0.200	0.278	0.176	0.258	0.197	0.282
	192	0.153±0.001	0.246±0.001	0.152	0.244	0.165	0.258	0.160	0.250	0.162	0.253	0.173	0.262	0.200	0.280	0.175	0.262	0.196	0.285
	336	0.170±0.001	0.264±0.001	0.170	0.264	0.177	0.273	0.173	0.267	0.178	0.269	0.190	0.279	0.214	0.295	0.185	0.278	0.209	0.301
	720	0.208±0.001	0.297±0.001	0.212	0.299	0.213	0.304	0.210	0.309	0.225	0.317	0.230	0.313	0.255	0.327	0.220	0.315	0.245	0.333
	avg	0.167±0.001	0.260±0.001	0.168	0.259	0.175	0.269	0.173	0.268	0.178	0.270	0.189	0.276	0.217	0.295	0.189	0.278	0.212	0.300
Traffic	96	0.432±0.002	0.279±0.001	0.458	0.296	0.406	0.277	0.430	0.294	0.395	0.268	0.427	0.272	0.651	0.391	0.593	0.378	0.650	0.396
	192	0.442±0.001	0.289±0.001	0.457	0.294	0.426	0.290	0.452	0.307	0.417	0.276	0.454	0.289	0.602	0.363	0.595	0.377	0.598	0.370
	336	0.456±0.002	0.295±0.002	0.470	0.299	0.432	0.281	0.470	0.316	0.433	0.283	0.450	0.282	0.609	0.366	0.609	0.385	0.605	0.373
	720	0.487±0.003	0.311±0.001	0.502	0.314	0.463	0.300	0.498	0.323	0.467	0.302	0.484	0.301	0.647	0.385	0.673	0.418	0.645	0.394
	avg	0.454±0.002	0.293±0.001	0.472	0.301	0.431	0.287	0.463	0.310	0.428	0.282	0.454	0.286	0.627	0.376	0.618	0.390	0.625	0.383

TimeEmb outperforms frequency-domain models by jointly modeling invariant and dynamic components

М	odel	Time (ou			leNet 124		omser 124		rNet 124		former 124		hTST 023		TS 124		TS 123		near 123
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETThi	96	0.366±0.001	0.387±0.001	0.378	0.391	0.373	0.392	0.375	0.394	0.386	0.405	0.394	0.406	0.386	0.396	0.395	0.407	0.386	0.400
	192	0.417±0.001	0.416±0.001	0.426	0.419	0.433	0.420	0.436	0.422	0.441	0.436	0.440	0.435	0.436	0.423	0.448	0.440	0.437	0.432
	336	0.457±0.001	0.436±0.001	0.464	0.439	0.470	0.437	0.476	0.443	0.487	0.458	0.491	0.462	0.478	0.444	0.499	0.472	0.481	0.459
	720	0.459±0.002	0.460±0.001	0.461	0.460	0.467	0.456	0.474	0.469	0.503	0.491	0.487	0.479	0.502	0.495	0.558	0.532	0.519	0.516
	avg	0.425±0.001	0.425±0.001	0.432	0.427	0.435	0.426	0.440	0.432	0.454	0.447	0.453	0.446	0.451	0.440	0.475	0.463	0.456	0.452
ETTh2	96	0.277±0.001	0.328±0.001	0.285	0.335	0.293	0.342	0.292	0.343	0.297	0.349	0.288	0.340	0.295	0.350	0.309	0.364	0.333	0.387
	192	0.356±0.001	0.379±0.001	0.373	0.391	0.371	0.389	0.369	0.395	0.380	0.400	0.376	0.395	0.381	0.396	0.395	0.425	0.477	0.476
	336	0.400±0.002	0.417±0.001	0.421	0.433	0.382	0.409	0.420	0.432	0.428	0.432	0.440	0.451	0.426	0.438	0.462	0.467	0.594	0.541
	720	0.416±0.001	0.437±0.002	0.453	0.458	0.415	0.434	0.430	0.446	0.427	0.445	0.436	0.453	0.431	0.446	0.721	0.604	0.831	0.657
	avg	0.362±0.001	0.390±0.001	0.383	0.404	<u>0.365</u>	0.393	0.378	0.404	0.383	0.407	0.385	0.410	0.383	0.408	0.472	0.465	0.559	0.515
ETTmt	96	0.304±0.001	0.343±0.001	0.319	0.360	0.326	0.361	0.318	0.358	0.334	0.368	0.329	0.365	0,355	0.375	0.335	0.372	0.345	0.372
	192	0.354±0.001	0.373±0.001	0.360	0.381	0.363	0.380	0.364	0.383	0.377	0.391	0.380	0.394	0,392	0.393	0.388	0.401	0.380	0.389
	336	0.379±0.001	0.393±0.001	0.389	<u>0.403</u>	0.395	0.403	0.396	0.406	0.426	0.420	0.400	0.410	0,424	0.414	0.421	0.426	0.413	0.413
	720	0.435±0.001	0.428±0.001	0.447	0.441	0.453	0.438	0.456	0.444	0.491	0.459	0.475	0.453	0,487	0.449	0.486	0.465	0.474	0.453
	avg	0.368±0.001	0.384±0.001	0.379	0.396	0.384	0.395	0.384	0.398	0.407	0.410	0.396	0.406	0,415	0.408	0.408	0.416	0.403	0.407
ETTm2	96	0.163±0.001	0.242±0.001	0.163	0.246	0.177	0.259	0.174	0.257	0.180	0.264	0.184	0.264	0.183	0.266	0.189	0.277	0.193	0.292
	192	0.226±0.001	0.285±0.001	0.229	0.290	0.243	0.301	0.240	0.300	0.250	0.309	0.246	0.306	0.247	0.305	0.258	0.326	0.284	0.362
	336	0.286±0.001	0.324±0.001	0.284	0.327	0.302	0.340	0.297	0.339	0.311	0.348	0.308	0.346	0.307	0.342	0.343	0.390	0.369	0.427
	720	0.383±0.001	0.381±0.001	0.389	0.391	0.397	0.396	0.392	0.393	0.412	0.407	0.409	0.402	0.407	0.399	0.495	0.480	0.554	0.522
	avg	0.265±0.001	0.308±0.001	0.266	0.314	0.279	0.324	0.276	0.322	0.288	0.332	0.287	0.330	0.286	0.328	0.321	0.368	0.350	0.401
Weather	96	0.150±0.001	0.190±0.001	0.158	0.203	0.163	0.207	0.162	0.207	0.174	0.214	0.176	0.217	0.166	0.213	0.174	0.208	0.196	0.255
	192	0.200±0.001	0.238±0.001	0.207	0.247	0.211	0.251	0.210	0.250	0.221	0.254	0.221	0.256	0.213	0.254	0.219	0.250	0.237	0.296
	336	0.259±0.001	0.282±0.001	0.262	0.289	0.267	0.292	0.265	0.290	0.278	0.296	0.275	0.296	0.269	0.294	0.273	0.290	0.283	0.335
	720	0.339±0.001	0.336±0.001	0.344	0.344	0.343	0.341	0.342	0.340	0.358	0.347	0.352	0.346	0.346	0.343	0.334	0.332	0.345	0.381
	avg	0.237±0.001	0.262±0.001	0.243	0.271	0.246	0.272	0.245	0.272	0.258	0.278	0.256	0.279	0.249	0.276	0.250	0.270	0.265	0.317
Electricity	96	0.136±0.001	0.231±0.001	0.136	0.229	0.147	0.241	0.147	0.245	0.148	0.240	0.164	0.251	0.200	0.278	0.176	0.258	0.197	0.282
	192	0.153±0.001	0.246±0.001	0.152	0.244	0.165	0.258	0.160	0.250	0.162	0.253	0.173	0.262	0.200	0.280	0.175	0.262	0.196	0.285
	336	0.170±0.001	0.264±0.001	0.170	0.264	0.177	0.273	0.173	0.267	0.178	0.269	0.190	0.279	0.214	0.295	0.185	0.278	0.209	0.301
	720	0.208±0.001	0.297±0.001	0.212	0.299	0.213	0.304	0.210	0.309	0.225	0.317	0.230	0.313	0.255	0.327	0.220	0.315	0.245	0.333
	avg	0.167±0.001	0.260±0.001	0.168	0.259	0.175	0.269	0.173	0.268	0.178	0.270	0.189	0.276	0.217	0.295	0.189	0.278	0.212	0.300
Traffic	96	0.432±0.002	0.279±0.001	0.458	0.296	0.406	0.277	0.430	0.294	0.395	0.268	0.427	0.272	0.651	0.391	0.593	0.378	0.650	0.396
	192	0.442±0.001	0.289±0.001	0.457	0.294	0.426	0.290	0.452	0.307	0.417	0.276	0.454	0.289	0.602	0.363	0.595	0.377	0.598	0.370
	336	0.456±0.002	0.295±0.002	0.470	0.299	0.432	0.281	0.470	0.316	0.433	0.283	0.450	0.282	0.609	0.366	0.609	0.385	0.605	0.373
	720	0.487±0.003	0.311±0.001	0.502	0.314	0.463	0.300	0.498	0.323	0.467	0.302	0.484	0.301	0.647	0.385	0.673	0.418	0.645	0.394
	avg	0.454±0.002	0.293±0.001	0.472	0.301	0.431	0.287	0.463	0.310	0.428	0.282	0.454	0.286	0.627	0.376	0.618	0.390	0.625	0.383

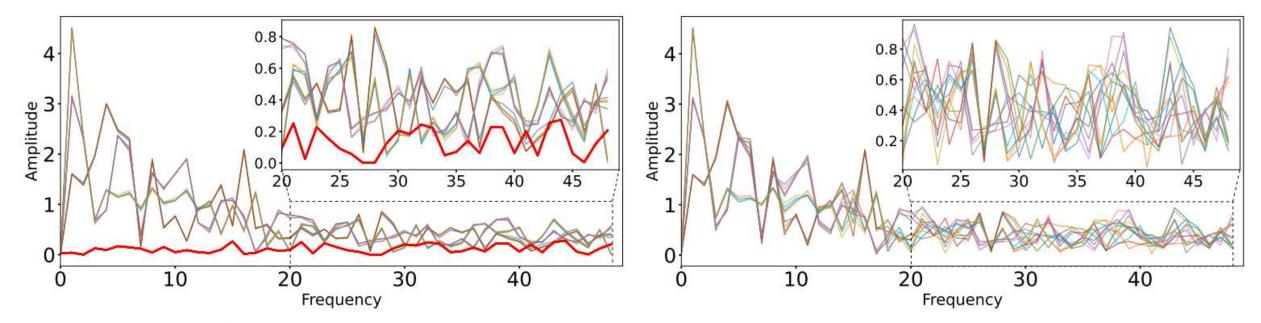

On the Traffic dataset, TimeEmb underperforms Transformer-based models due to its lack of explicit variable correlation modeling, but it still surpasses other types of models

Efficiency Performance

Moreover, TimeEmb achieves the best performance—efficiency trade-off: it uses only 0.9M parameters, over *5× fewer* than heavy Transformer-based models like iTransformer or FEDformer

Compatibility Analysis

Assess TimeEmb's Compatibility

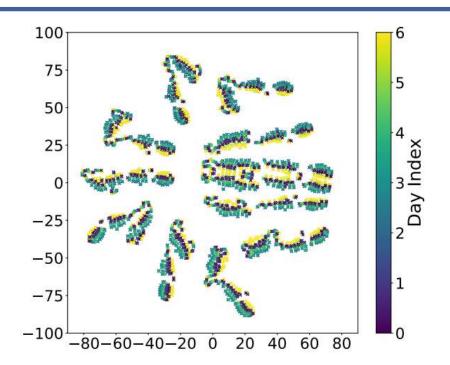

- ✓ Integrate TimeEmb as a plug-in module into existing models including DLinear, MLP, and iTransformer
- \checkmark Replace the backbone prediction layer f_{θ} with the alternative model

Compatibility Analysis

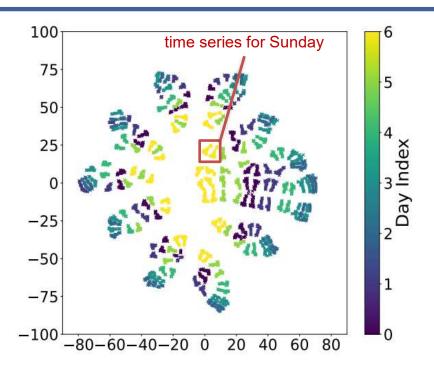
4																				
Dataset				Electric	city				Weather											
Horizon	96		192		336		720		96		192		336		72	20				
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE				
Linear	0.196	0.279	0.195	0.282	0.208	0.298	0.243	0.330	0.197	0.256	0.238	0.295	0.285	0.335	0.346	0.381				
+ our model	0.173	0.270	0.179	0.274	0.193	0.288	0.233	0.320	0.170	0.218	0.222	0.260	0.275	0.298	0.349	0.345				
Impr.	+11.7%	+3.2%	+8.2%	+2.8%	+7.2%	+3.4%	+4.1%	+3.0%	+13.7%	+14.8%	+6.7%	+11.9%	+3.5%	+11.0%	-0.9%	+9.4%				
MLP	0.177	0.265	0.183	0.271	0.197	0.287	0.234	0.320	0.180	0.234	0.223	0.274	0.268	0.309	0.342	0.370				
+ our model	0.137	0.234	0.155	0.250	0.172	0.267	0.211	0.303	0.154	0.197	0.203	0.243	0.263	0.288	0.344	0.344				
Impr.	+22.6%	+11.7%	+15.3%	+7.7%	+12.7%	+7.0%	+9.8%	+5.3%	+14.4%	+15.8%	+9.0%	+11.3%	+1.9%	+6.8%	-0.6%	+7.0%				
DLinear	0.195	0.278	0.194	0.281	0.207	0.297	0.243	0.330	0.195	0.254	0.237	0.295	0.281	0.329	0.347	0.385				
+ our model	0.171	0.271	0.181	0.281	0.190	0.291	0.223	0.321	0.168	0.230	0.216	0.277	0.264	0.316	0.333	0.370				
Impr.	+12.3%	+2.5%	+6.7%	+0.0%	+8.2%	+2.0%	+8.2%	+2.7%	+13.8%	+9.4%	+8.9%	+6.1%	+6.0%	+4.0%	+4.0%	+3.9%				
iTransformer	0.153	0.245	0.166	0.256	0.182	0.274 0.275 -0.4%	0.218	0.306	0.181	0.222	0.226	0.260	0.284	0.302	0.360	0.352				
+ our model	0.142	0.242	0.163	0.260	0.175		0.203	0.299	0.162	0.208	0.210	0.251	0.269	0.296	0.346	0.344				
Impr.	+7.2%	+1.2%	+1.8%	-1.6%	+3.8%		+6.9%	+2.3%	+10.5%	+6.3%	+7.1%	+3.5%	+5.3%	+2.0%	+3.9%	+2.3%				

→ The results show consistent improvements across all backbones with negligible computational cost, proving its broad compatibility and ease of integration

Visualization


(a) Time series \overline{X} spectrum (colorful lines) and time-invariant embedding X_s spectrum (bold red line)

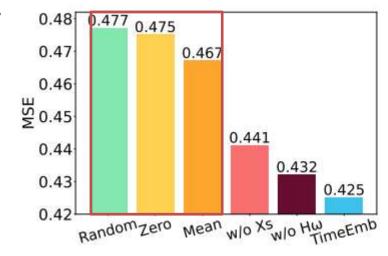
(b) Time-varying component X_d spectrum

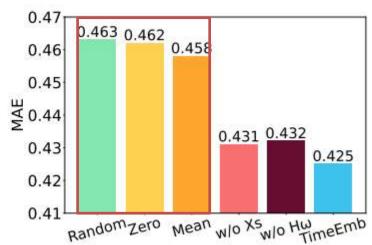

The embedding captures the shared low-frequency structure across days, while the time-varying component shows distinct high-frequency fluctuations

→ TimeEmb effectively separates global stable patterns from local dynamic variations

Visualization

Before Disentanglement

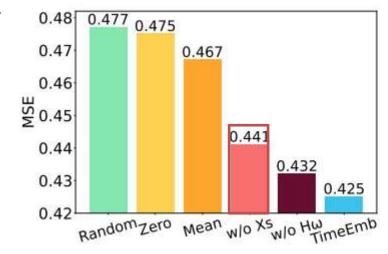

After Disentanglement

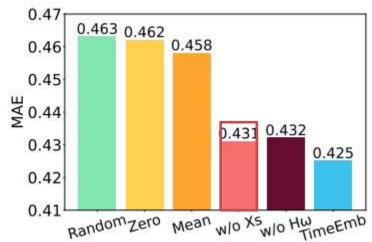

Before disentanglement, samples from different weekdays are mixed together; after disentanglement, they form clearer, separated clusters

→ Removing the invariant component enhances discriminability and verifies successful static-dynamic separation

Ablation Study

- Initialize emb bank randomly
- Fix emb bank to zero
- Fix emb bank to mean value
- w/o embedding bank
- w/o frequency filter

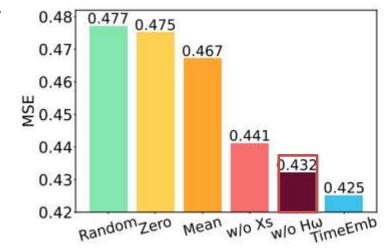


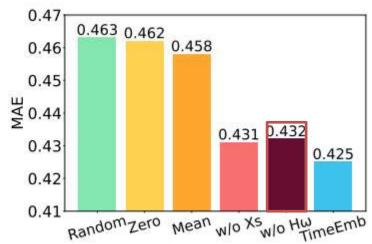


- → Performance is highly sensitive to the embedding bank design
- → Perturb the embedding bank (random / zero / mean) leads to performance drops

Ablation Study

- Initialize emb bank randomly
- Fix emb bank to zero
- Fix emb bank to mean value
- w/o embedding bank
- w/o frequency filter

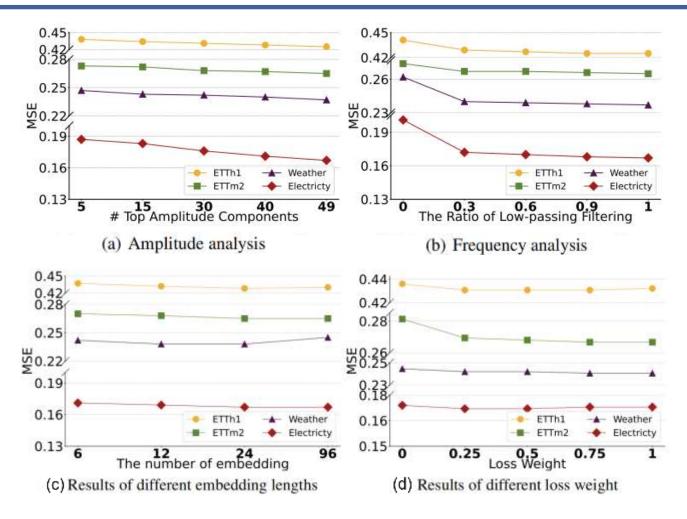



Removing the embedding bank significantly degrades performance

→ The model loses its ability to capture long-term stable patterns, confirming that static representations are essential for robust forecasting

Ablation Study

- Initialize emb bank randomly
- Fix emb bank to zero
- Fix emb bank to mean value
- w/o embedding bank
- w/o frequency filter



Removing the frequency filter also causes clear performance drops

→ The model struggles to adapt to short-term dynamics, proving the filter's importance in modeling temporal variability

Hyper - parameters Analysis

→ TimeEmb remains robust across a wide range of values, indicating strong stability and generalizability.

Outline

Introduction

Framework

Experiments

Conclusion

Conclusion

We propose a new perspective for handling non-stationary time series —

by disentangling static and dynamic components in the frequency domain.

- Through a learnable embedding bank and a frequency filter, TimeEmb effectively models longterm invariance and short-term fluctuations.
- It achieves state-of-the-art performance, lightweight efficiency, and high interpretability.
- Moreover, TimeEmb can seamlessly enhance existing models, making it a practical, plug-andplay solution for real-world forecasting tasks.

Thanks!

Email: xiamy2322@mails.jlu.edu.cn

zhangzijian@jlu.edu.cn

苦林木学