

Dynam3D: Dynamic Layered 3D Tokens Empower VLM for Vision-and-Language Navigation

Bridging the gap between **Geometric Map** and **Semantic VLM** via dynamic hierarchical memory

Zihan Wang, Seungjun Lee, Gim Hee Lee

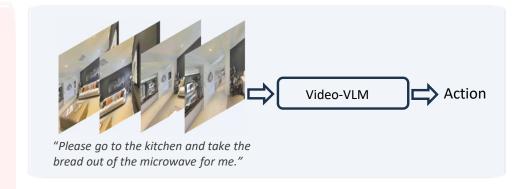
School of Computing, National University of Singapore

The Navigation Dilemma

1. The "Video Tape" Approach

Standard Video-VLMs treat the world as a linear stream of frames.

- ▲ Spatial Amnesia: Video-based models rely on context windows. When an object leaves the frame, it is forgotten.
- ▲ Geometry Blindness: 2D video frames lack explicit 3D structure, leading to collisions and poor planning.



The Navigation Dilemma

2. The "Frozen Map" Approach

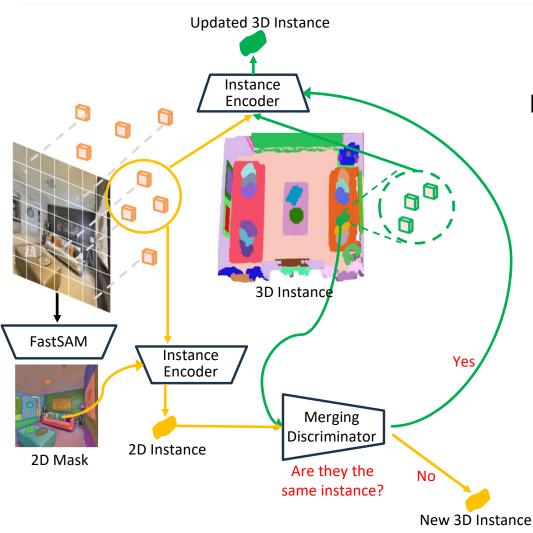
Traditional 3D Maps assume a static world.

- * Static Assumptions: Most mapping systems assume a static world, failing when object moves or environments change.
- * Granularity-Efficiency Conflict: Dense representations (e.g., voxels) are computationally expensive for real-time reasoning, while sparse ones fail to capture fine-grained semantics for interaction.

The Semantic Pyramid Tokenization

How do we compress a 1M-point world into a 1K-token VLM context window?

Online 3D Instance Construction



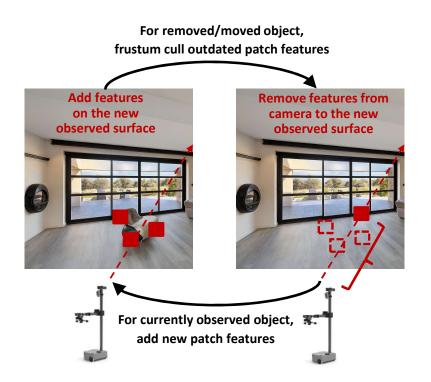
FastSAM + Merging Discriminator

- 1. Aggregate patches via 2D mask for 2D instance
- 2. Retrieve Top-K nearest existing 3D instances
- 3. A learned Merging Discriminator predicts if a 2D-3D pair is the same instance based on:
 - Feature Similarity (Semantic)
 - Euclidean Distance (Geometric)
- 4. Concatenate their patch features and update the 3D instance representation

Adapt to the Dynamic World

Video or Static maps always fail here. We need a map that "breathes".

Dynamic Frustum Culling (Forget outdated information)



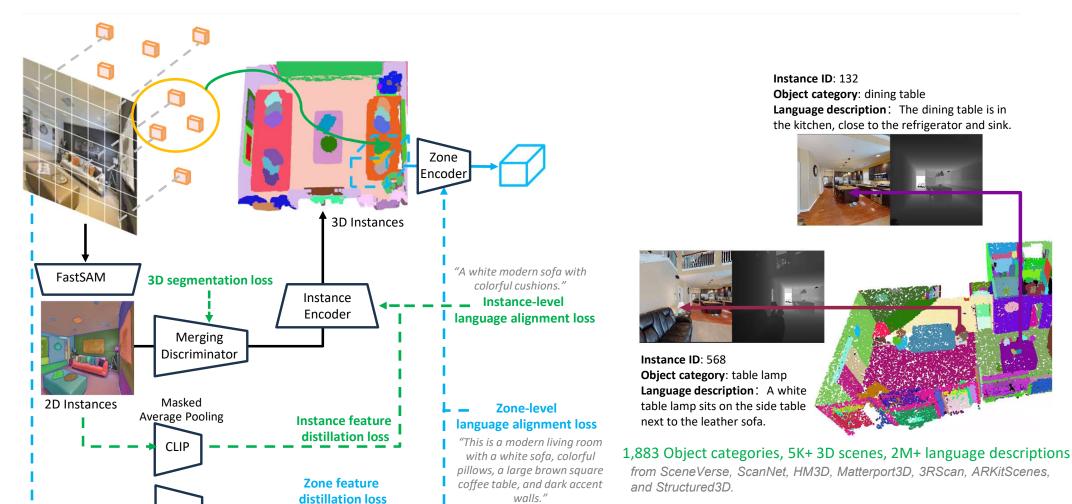
$$P_c^ op = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix} = \mathbf{R} P_w^ op + \mathbf{T}, \quad egin{bmatrix} u \ v \ 1 \end{bmatrix} = rac{1}{z_c} \mathbf{K} egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix},$$

FrustumCulling (P_w) , if $0 < z_c < \min(d_{u,v} + \delta, \Delta)$, 0 < u < H, and 0 < v < W.

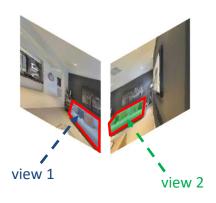
- Where $d_{u,v}$ is the observed depth. If patch z_c is closer than the current observed surface, it will be removed.
- δ is a noise threshold and Δ is the farthest culling distance.

Contrastive Learning for Semantic Alignment

CLIP



Subspace Contrastive Learning for 3D Consistency



Karage The Challenge: View Inconsistency

- •Naive feature distillation is interfered by background noise
- Results in significant feature gaps for the same instance O across different views

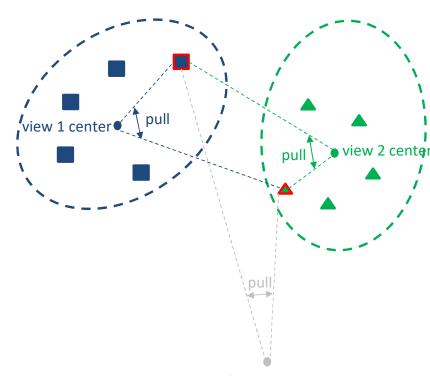
K The Method: Shift the Anchor

$$\mathcal{L}_{subspace_distillation} = \frac{1}{I} \sum_{i=1}^{I} \text{CrossEntropy}(\{\text{CosSim}((\mathcal{O}_i - \mathcal{V}_j), (\mathcal{O}_j^{gt} - \mathcal{V}_j))/\tau\}_{j=1}^{J}, i)$$

- •Calculate V_i : The "Semantic Center" of the current view (average of all patches)
- •Subspace Alignment: Optimization targets $(O V_i)$ instead of absolute O

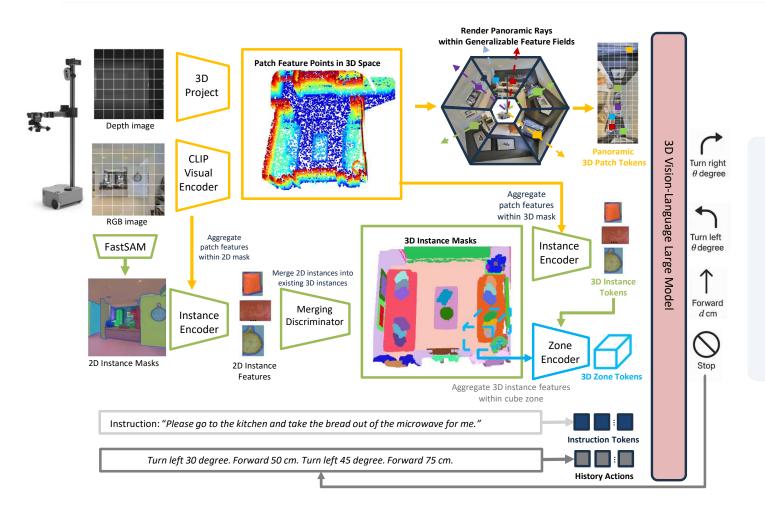
The Effect: Bias Mitigation

- •Moves the anchor from **CLIP Origin** to the **View Center** V_i
- Effectively removes view-specific bias, enforcing stronger multi-view consistency



Zero-point of CLIP semantic space

The Brain: 3D-VLM Architecture



LLaVA-Phi-3-mini

A lightweight (3.8B) Multimodal LLM.

INPUT:

{patch_tokens}{instance_tokens}{zone_tokens}
{instruction_tokens} {history_action_tokens}

OUTPUT:

- 1) Turn left θ degree. 2) Turn right θ degree.
- 3) Forward d cm. 4) Stop.

Navigation Performance

We outperform both video-based and map-based baselines, specifically in Success Rate (SR) and Path Efficiency (SPL).

R2R-CE Step-by-step following, e.g., "Walk through the bedroom around the bed.

Walk out of the door into the hallway. Walk towards the closet area in the hallway."

NaVid	37.4
Uni-NaVid	47.0
g3D-LF	47.2
Dynam3D	52.9

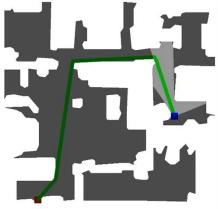
REVERIE-CE High-level instruction, e.g., "Go to the familyroom and bring me the pillow from the couch closest to the entrance."

NaVid	26.6
g3D-LF	34.4
Dynam3D	40.1

NavRAG-CE User-demand instruction, e.g., "Walk to the warm hall featuring elegant wooden accents and set the large wooden table with candles and napkins for a lovely dinner ambiance."

NaVid	19.4
g3D-LF	21.4
Dynam3D	24.7

"After exiting the bedroom, walk straight along the hallway, then turn left at the end of the hallway to enter the kitchen, and walk to the stove."



Sim-to-Real Deployment

Deploy Dynam3D on Hello Robot Stretch 3 in NUS Robotics Living Studio.

70%

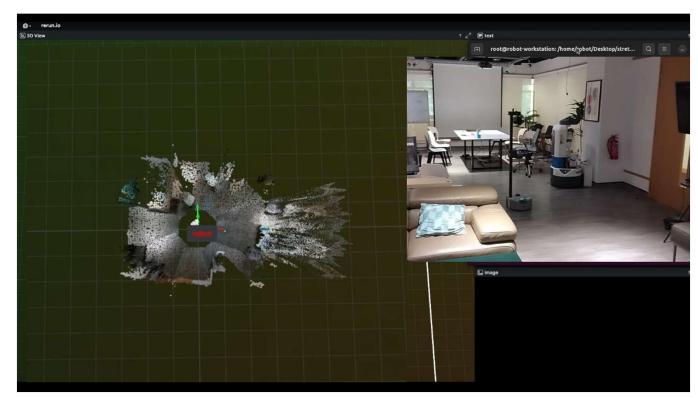
45%

Static Success Rate

Dynamic Success Rate

The dynamic layered 3D tokens effectively handles moved objects.

"Please pick up the blue cup on the table and place it in the kitchen sink."



Conclusion: Towards Dynamic Embodied Memory

Hierarchical

Patch → Instance → Zone

Bridging the gap between finegrained geometric details and high-level VLM reasoning.

Dynamic

Active Update

Frustum Culling enables the map to "breathe" and adapt to changes with **83ms** latency.

Aligned

3D Consistency

Shifting anchors to local view centers effectively denoises 2D-to-3D feature distillation.

Code Available github.com/MrZihan/Dynam3D

