

FRAM: Frobenius-Regularized Assignment Matching with Mixed-Precision Computing

Binrui Shen¹
Beijing Normal University¹

Yuan Liang¹

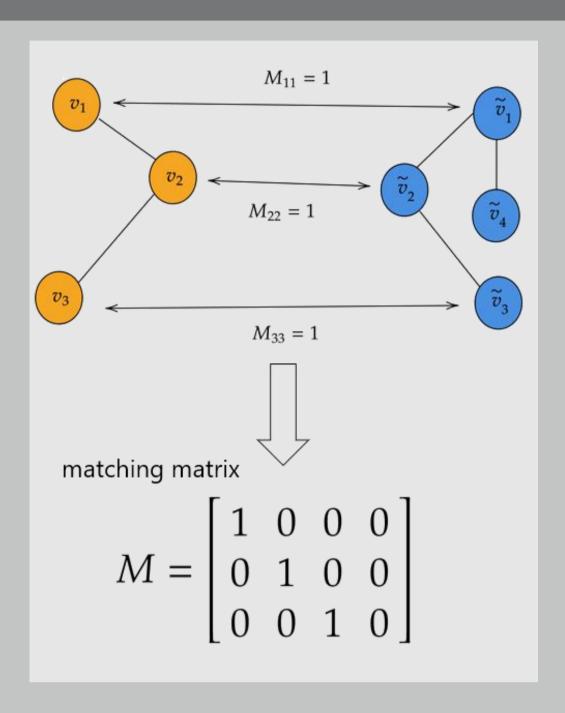
Shengxin Zhu^{1,2}

Beijing Normal-Hong Kong Baptist University²

⊳ FP64

→ TF32

What is Graph Matching



Example

Objective Function and Method

The objective function of graph matching $\mathcal{Z}(M) = \frac{1}{2} \operatorname{tr} \left(M^T A M \widetilde{A} \right) + \lambda \operatorname{tr} \left(M^T K \right).$

The projected fixed-point method is $N^{(t)} = (1 - \alpha)N^{(t-1)} + \alpha D^{(t)},$ $D^{(t)} = \mathcal{P}(\nabla \mathcal{Z}(N^{(t-1)})).$

 $\mathcal{P}(\cdot)$ projects the gradient onto a feasible set, such as a convex hull of the original domain, using the doubly stochastic projection (DSP):

$$\mathcal{P}_{\mathcal{D}}(X) = \arg\min_{D \in \mathcal{D}_{n \times n}} \|D - X\|_F.$$

$$\mathcal{D}_{n \times n} := \{Y : Y\mathbf{1} = \mathbf{1}, Y^T\mathbf{1} = \mathbf{1}, Y \geq 0\}.$$

Challenges

Loss of scale invariance property

$$\operatorname{arg\,max} \mathcal{Z}(M) = \operatorname{arg\,max} w \mathcal{Z}(M), \ w > 0.$$
 $\mathcal{P}_{\mathcal{D}}(X) \neq \mathcal{P}_{\mathcal{D}}(wX), \ X \in \mathbb{R}^{n \times n}_{+}.$

Projection-relaxation may cause deviation from original domain.

Why DSP is Sensitive to Scaling Changes?

$$\mathcal{P}_{\mathcal{D}}(wX) = \arg\max_{D \in \mathcal{D}_{n \times n}} \langle D, X \rangle - \frac{1}{2w} \langle D, D \rangle.$$

Referring back to the updating formula, X corresponds to the gradient $\nabla \Phi(N^{(t)})$:

$$\mathcal{P}_{\mathcal{D}}(w\nabla\Phi(N^{(t)})) = \arg\max_{D \in \mathcal{D}_{n \times n}} -\frac{1}{2w}\langle D, D \rangle$$
$$+ \operatorname{tr}(D^{T}AN^{(t)}\widetilde{A}) + \lambda \operatorname{tr}(D^{T}K)$$

As w increases, the projection process emphasizes optimizing the objective assignment score.

Frobenius-Regularized Assignment (FRA)

Turn the uncontrollable problem's scale constant w into a controllable modeling parameter θ .

Theorem. DSP with a parameter θ

$$D_X^{\theta} = \arg\min_{D \in \mathcal{D}_{n \times n}} \|D - \frac{\theta}{2}X\|_F^2$$

can be rewritten as

$$D_X^{\theta} = \arg\max_{D \in \mathcal{D}_{n \times n}} \langle D, X \rangle - \frac{1}{\theta} \langle D, D \rangle.$$

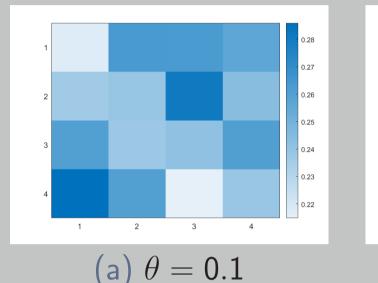
The new formulation allows input normalization by $\frac{X}{\max(X)}$ to eliminate scaling variations (i.e., w).

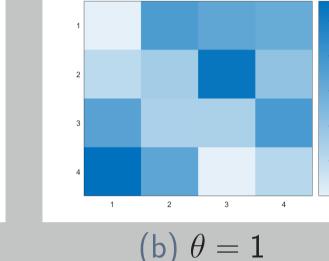
Effect of θ

What is the distance between D_X^{θ} and D_X^{∞} ? **Proposition**. For a matrix $X \in \mathbb{R}_+^{n \times n}$,

$$\frac{1}{n}\left(\langle D_X^{\infty}, X \rangle - \langle D_X^{\theta}, X \rangle\right) \leq \frac{1}{\theta}.$$

How θ suppresses the bias introduced by relaxation?





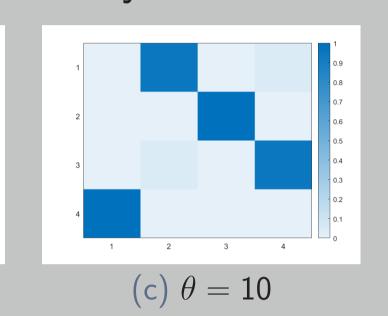
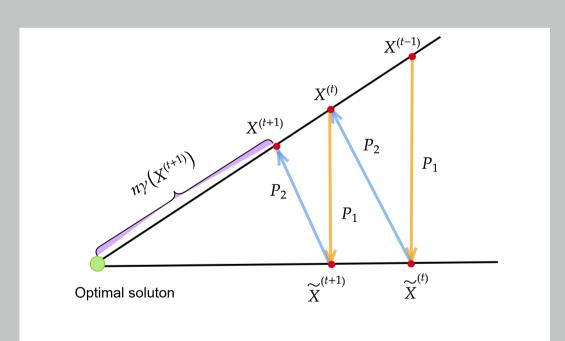


Figure: Visualization of D_X^{θ} under different θ . The color of each cell represents the matrix entry, with darker shades indicating larger values.

Solve FRA

Scaling Doubly Stochastic Normalization (SDSN): $X^{(0)} = \frac{\theta X}{\max(X)}, \ \tilde{X}^{(k)} = \mathcal{P}_1\left(X^{(k-1)}\right), \ X^{(k)} = \mathcal{P}_2\left(\tilde{X}^{(k)}\right),$ $\mathcal{P}_1(X) = \arg\min_{Y \mathbf{1} = Y^T \mathbf{1} = \mathbf{1}} \|X - Y\|_F, \mathcal{P}_2(X) = \arg\min_{Y \geq 0} \|X - Y\|_F^2.$



Robustness to Rounding Error

Theorem Given that $X_k = \hat{X}_k + \Delta X_k$ is the k-th iterate of SDSN and ΔX_k is the rounding error, both X_k and \hat{X}_k have the same limit under subsequent SDSN iterations.

This property prevents accumulation of rounding error arising from the gradient matrix computation and SDSN (corresponding to ΔX_0 and $\{\Delta X_k\}_{k>1}$).

Algorithm with Mixed-Precision

Algorithm FRAM

- 1: Require $A, \tilde{A}, K, \lambda, \alpha, \theta, \delta_{th}$
- 2: Initial $X^{(0)} = \mathbf{0}_{n \times \tilde{n}}$
- 3: $c = \max(A, \tilde{A}, K)$
- 4: $A = A/\sqrt{c}$, $\tilde{A} = \tilde{A}/\sqrt{c}$, $K = K/\sqrt{c}$ \triangleright FP64
- 5: While $\delta^{(t)} > \delta_{th}$
- $X^{(t)} = AN^{(t-1)}\tilde{A} + \lambda K$
- $D^{(t)} = \mathsf{SDSN}(X^{(t)}, \theta) \qquad \qquad \triangleright \mathsf{FP32}$
- $\mathsf{N}^{(t)} = (1 \alpha)\mathsf{N}^{(t-1)} + \alpha D^{(t)} \qquad \qquad \mathsf{FP64}$
- 9: $\delta^{(t)} = \|N^{(t)} N^{(t-1)}\|_F / \|N^{(t)}\|_F$ > FP64
- 10: Discretize N to obtain M ▷ FP64
- 11: **Return** Matching matrix M

Experiments on Facebook Networks

Social network	5% noise		15% noise		25% noise	
Methods	Acc	Time	Acc	Time	Acc	Time
S-GWL	26.4%	1204.1s	18.3%	1268.2s	17.9%	1295.8s
GWL	78.1%	3721.6s	68.4%	4271.3s	60.8%	4453.9s
DSPFP	79.7%	151.3s	68.3%	154.2s	62.2%	156.9s
GA	35.5%	793.2s	21.4%	761.7s	16.0%	832.6s
GRASP	37.9%	63.6s	20.3%	67.4 s	15.7%	71.3 s
ASM	91.1%	387.2s	88.4%	391.7s	85.7%	393.1s
AIPFP	68.6%	2705.5s	55.1%	2552.7s	47.8%	2513.8s
FRAM	94.7%	211.1s	91.1%	221.6s	89.5%	222.9s

Acceleration of Mixed-Precision Design

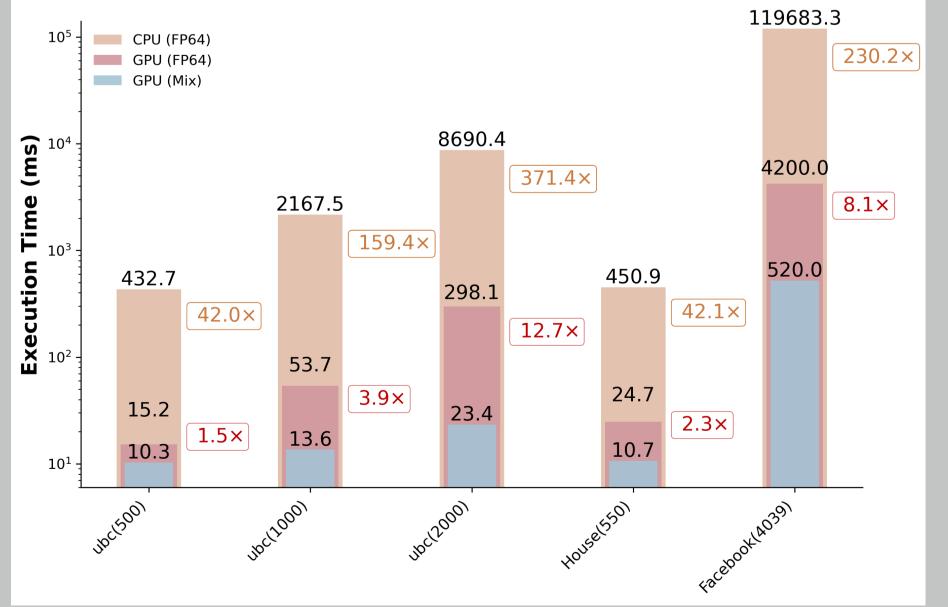


Figure: Red boxed numbers show the speedup of GPU mixed-precision over GPU double precision, and yellow boxed numbers show the speedup over CPU double precision.

NIPS 2025