Provably Efficient RL under Episode-Wise Safety in Constrained MDPs with Linear Function Approximation

Toshinori Kitamura, Arnob Ghosh, Tadashi Kozuno, Wataru Kumagai,

Kazumi Kasaura, Kenta Hoshino, Yohei Hosoe, Yutaka Matsuo

Contribution

We develop the first linear CMDP algorithm that guarantees:

- episode-wise safe exploration
- $lacksquare \widetilde{\mathcal{O}}(\sqrt{K})$ regret
- and computational tractability

Table 1: $\widetilde{\mathcal{O}}(\sqrt{K})$ regret CMDP algorithms

	paper	Epiwise safe?	Comp. Efficient?
Tabular	Yu et al. [47]	Yes	State size dependent
Linear	Ghosh et al. [18]	No	No
	Roknilamouki et al. [36]	Instantaneous	Yes
	Ours	Yes	Yes

Notation: Linear CMDP

Linear CMDP: $(\mathcal{S}, \mathcal{A}, H, P, r, u, b, s_1)$

- Finite state & action spaces: \mathcal{S} , \mathcal{A}
- lacksquare Horizon: $H\in\mathbb{N}$
- lacktriangle Transition probability: $P_h(s'\mid s,a)\in [0,1]$
- lacksquare Reward & utility: $r_h(s,a), u_h(s,a) \in [0,1]$
- lacksquare Constraint threshold: $b \in [0,H]$
- lacksquare Initial state: $s_1 \in \mathcal{S}$

Policy and Value Function

lacksquare Value functions: $V_{P.h}^{\pi,r}, V_{P.h}^{\pi,u}: \mathcal{S}
ightarrow \mathbb{R}$, where

$$V_{P,h}^{\pi,r}(s) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(s_{h'},a_{h'}) \mid s_h = s
ight]$$

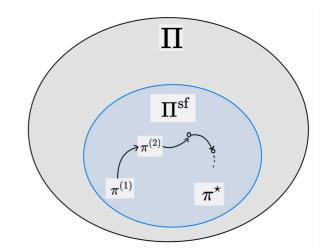
lacksquare Action value functions: $Q_{P.h}^{\pi,r},Q_{P.h}^{\pi,u}:\mathcal{S}
ightarrow\mathbb{R}$, where

$$Q_{P,h}^{\pi,r}(s,a) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(s_{h'},a_{h'}) \mid s_h = s, a_h = a
ight]$$

- $lacksquare P_h(s'\mid s,a) = oldsymbol{\mu}_h(s')^ op oldsymbol{\phi}(s,a)$
 - lacksquare Known feature map $\phi: \mathcal{S} imes \mathcal{A}
 ightarrow \mathbb{R}^d$
 - ullet Unknown vectors $oldsymbol{\mu}_h := ig(oldsymbol{\mu}_h^1, \dots, oldsymbol{\mu}_h^dig) \in \mathbb{R}^{S imes d}$
- $oldsymbol{r}_h(s,a) = (oldsymbol{ heta}_h^r)^ op oldsymbol{\phi}(s,a)$, $u_h(s,a) = (oldsymbol{ heta}_h^u)^ op oldsymbol{\phi}(s,a)$
 - lacktriangle Known vectors $oldsymbol{ heta}_r, oldsymbol{ heta}_u \in \mathbb{R}^d$

Setting: Episode-wise Safe Exploration

- Policies $\pi^{(1)}, \ldots, \pi^{(K)} \in \Pi$
- lacksquare Safe policy set: $\Pi^{ ext{sf}} riangleq \left\{ \pi \mid V_{P,1}^{\pi,u}(s_1) \geq b
 ight\}$
 - ullet Episode-wise safety: $\pi^{(k)} \in \Pi^{
 m sf}$ for all k



Assumption (Slater condition): We have access to $\pi^{\mathrm{sf}} \in \Pi^{\mathrm{sf}}$ and $\xi > 0$ such that $V_{P.1}^{\pi^{\mathrm{sf}}, u}(s_1) \geq b + \xi$.

Goal: Sublinear regret with episode-wise safety

$$\operatorname{Regret}(K)\coloneqq \sum^{K}V_{P,1}^{\pi^{\star},r}(s_1)-V_{P,1}^{\pi^{(k)},r}(s_1)=o(K) \ \ ext{such that} \ \ \pi^{(k)}\in\Pi^{\operatorname{sf}} \quad orall k\in\llbracket 1,K
rbracket$$

where $\pi^\star \in rg \max_{\pi \in \Pi^ ext{sf}} V_{P,1}^{\pi,r}(s_1)$ is an optimal safe policy.

Basic Approach: Optimistic-Pessimistic (Opt-Pes) Exploration

Idea (e.g., Yu et al. [47]): Estimate reward value optimistically and utility value pessimistically:

$$ext{(Opt-Pes)} \quad \pi^{(k)} \in rg \max_{\pi \in \Pi} \overline{V_{(k),1}^{\pi,r}(s_1)} \quad ext{such that} \quad \underline{V_{(k),1}^{\pi,u}(s_1)} \geq b \;. \tag{1}$$

$$\overline{V}_{(k),1}^{\pi,r} \coloneqq \widehat{V}_{(k),1}^{\pi,r+\beta^{(k)}} \text{ where } \widehat{V}_{(k),1}^{\pi,r} \text{ is the value estimate and } \beta^{(k)} \text{ is the bonus. Similarly, } \underline{V}_{(k),1}^{\pi,u} \coloneqq \widehat{V}_{(k),1}^{\pi,u-\beta^{(k)}}.$$

- Optimism leads to sublinear regret
- lacktriangle Pessimism ensures $\pi^{(k)} \in \Pi^{\mathrm{sf}}$

Technical contributions

We introduce two main techniques to address these challenges in linear CMDPs:

- 1. Tractability The large state space makes optimizing Eq. (1) non-trivial.
- 2. Feasibility Pessimistic estimates can make Eq. (1) infeasible.

Technique 1: Efficient Implementation of Opt-Pes Policy

$$ext{(Opt-Pes)} \quad \pi^{(k)} \in rg\max_{\pi \in \Pi} \overline{V}_{(k),1}^{\pi,r}\left(s_1
ight) ext{ such that } \underline{V}_{(k),1}^{\pi,u}\left(s_1
ight) \geq b \;, \tag{1}$$

Instead of solving Opt-Pes problem, we realize Opt-Pes by "softmax policy" using estimated value functions:

$$\pi_h^{(k),\lambda}(\cdot\mid s) = \operatorname{SoftMax}\left(\overline{\overline{Q}}_{(k),h}^r(s,\cdot) + \lambda \underline{\overline{Q}}_{(k),h}^u(s,\cdot)
ight)$$

Lemma 6:

- If $\lambda \approx 0$, then $\pi^{(k),\lambda}$ favors optimistic exploration
- If $\lambda\gg 0$, then $\pi^{(k),\lambda}$ tries to satisfy the pessimistic constraint

$$oxed{\overline{Q}_{(k),1}^{r ext{ or }u}}\coloneqq \widehat{Q}_{(k),1}^{\pi,r\pmeta^{(k)}}$$

We do bisection search in the interval $\lambda \in [0,C_{\lambda}]$ to find a good λ :

- $lacksquare ext{If } \underline{V}_{(k),1}^{\pi^{(k),\lambda},u}\left(s_{1}
 ight)\geq b$, then $\pi^{(k),\lambda}$ is safe. Decrease $\lambda\downarrow$
- Otherwise, $\pi^{(k),\lambda}$ is unsafe. Increase $\lambda \uparrow$.

 $C_{\lambda}>0$ is an upper bound of λ obtained by the Slater condition.

Technique 2: Safe Policy Deployment

$$(\text{Opt-Pes}) \quad \pi^{(k)} \in \argmax_{\pi \in \Pi} \overline{V}_{(k),1}^{\pi,r}\left(\boldsymbol{s}_{1}\right) \text{ such that } \underline{V}_{(k),1}^{\pi,u}\left(\boldsymbol{s}_{1}\right) \geq b \;. \tag{1}$$

At the start of training, the bonus may be so large that no policy satisfies the pessimistic constraint.

Safe policy deployment technique: Deploy $\pi^{ ext{sf}}$ if the policy $\pi^{(k),C_\lambda}$ is unsafe: $\underline{V}_{(k),1}^{\pi^{(k),C_\lambda},u}\left(s_1
ight) < b$

- ightarrow For any k, $\pi^{(k)}$ is ensured to be safe: it is chosen by either
- 1. $\pi^{\rm sf}$ that is safe or 2. $\pi^{(k),\lambda}$ that satisfies the pessimistic constraint.
- $\red{\mathcal{S}}$ For sublinear regret, we need to bound the # of $\pi^{ ext{sf}}$ deployments...

Theorem 3. With high probability, the safe policy $\pi^{
m sf}$ is deployed at most $\widetilde{\mathcal{O}}(d^3H^4\xi^{-2})$ times.

(See Section 2 for an intuitive derivation.)

Algorithm : Optimistic-Pessimistic Softmax Exploration for Linear CMDP

For each $k=1,2,\ldots,K$, do

- 1. If $V_{(k),1}^{\pi^{(k),C_{\lambda}},u}(s_1) < b$, all the softmax policies may not be safe. Deploy $\pi^{(k)} = \pi^{\mathrm{sf}}$.
- 2. Else, find the best λ for the softmax policy:
 - If $\underline{V}_{(k),1}^{\pi^{(k),\lambda},u}\left(s_{1}
 ight)\geq b$, λ is large. Decrease $\lambda\downarrow$.
 - Else, increase $\lambda \uparrow$.
 - lacksquare After sufficient iterations, set $\pi^{(k)}=\pi^{(k),\lambda}$
- 3. Sample a trajectory $\left(s_1^{(k)}, a_1^{(k)}, \ldots, s_H^{(k)}, a_H^{(k)}\right)$ by deploying $\pi^{(k)}$.

Main Open Problem: Can we achieve episode-wise safety in linear CMDPs with multiple constraints?

Theorem 4 With high probability, the algorithm achieves

$$\pi^{(k)} \in \Pi^{ ext{sf}} orall k \in \{1,\dots,K\} \quad ext{ and } \quad ext{Regret}(K) \leq \widetilde{\mathcal{O}}\left(H^4 \xi^{-1} \sqrt{d^5 K}
ight)$$