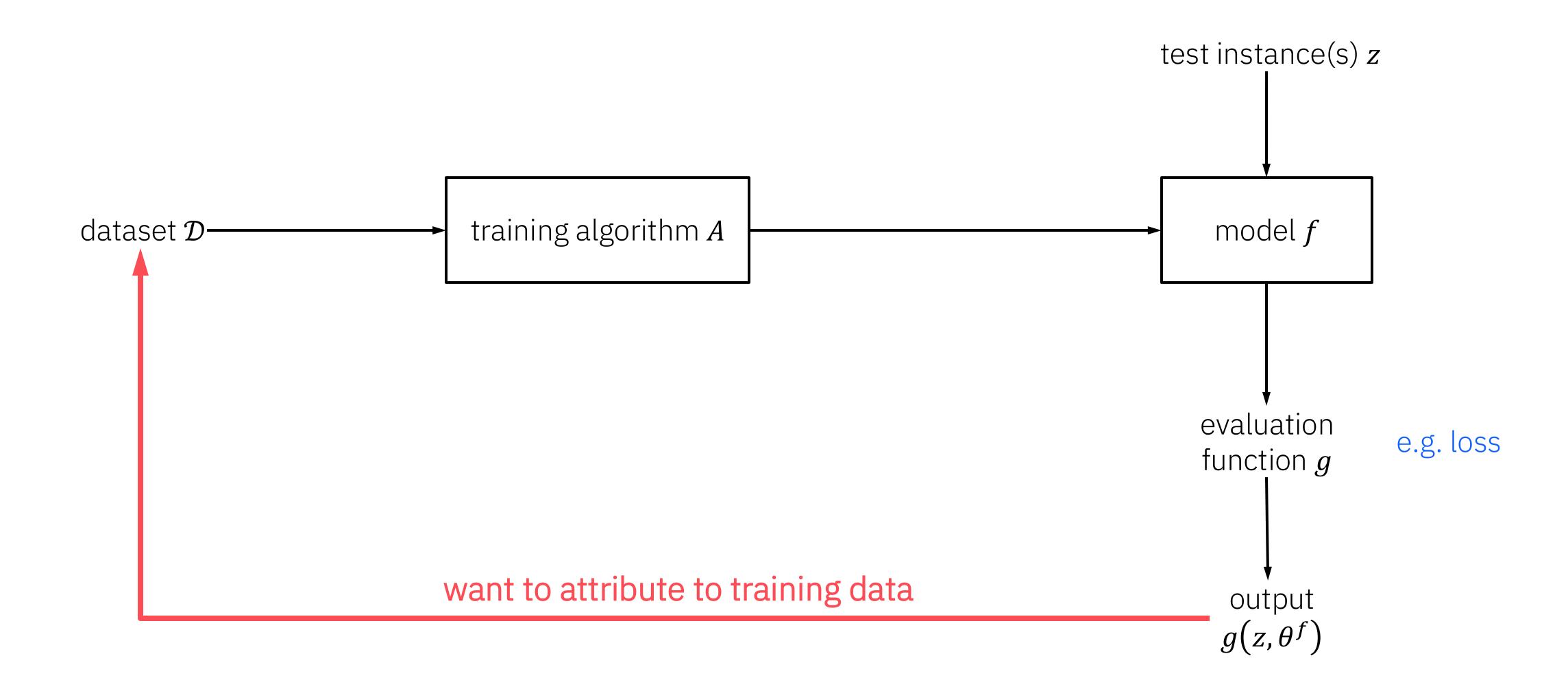
Final-Model-Only Data Attribution

with a Unifying View of Gradient-Based Methods

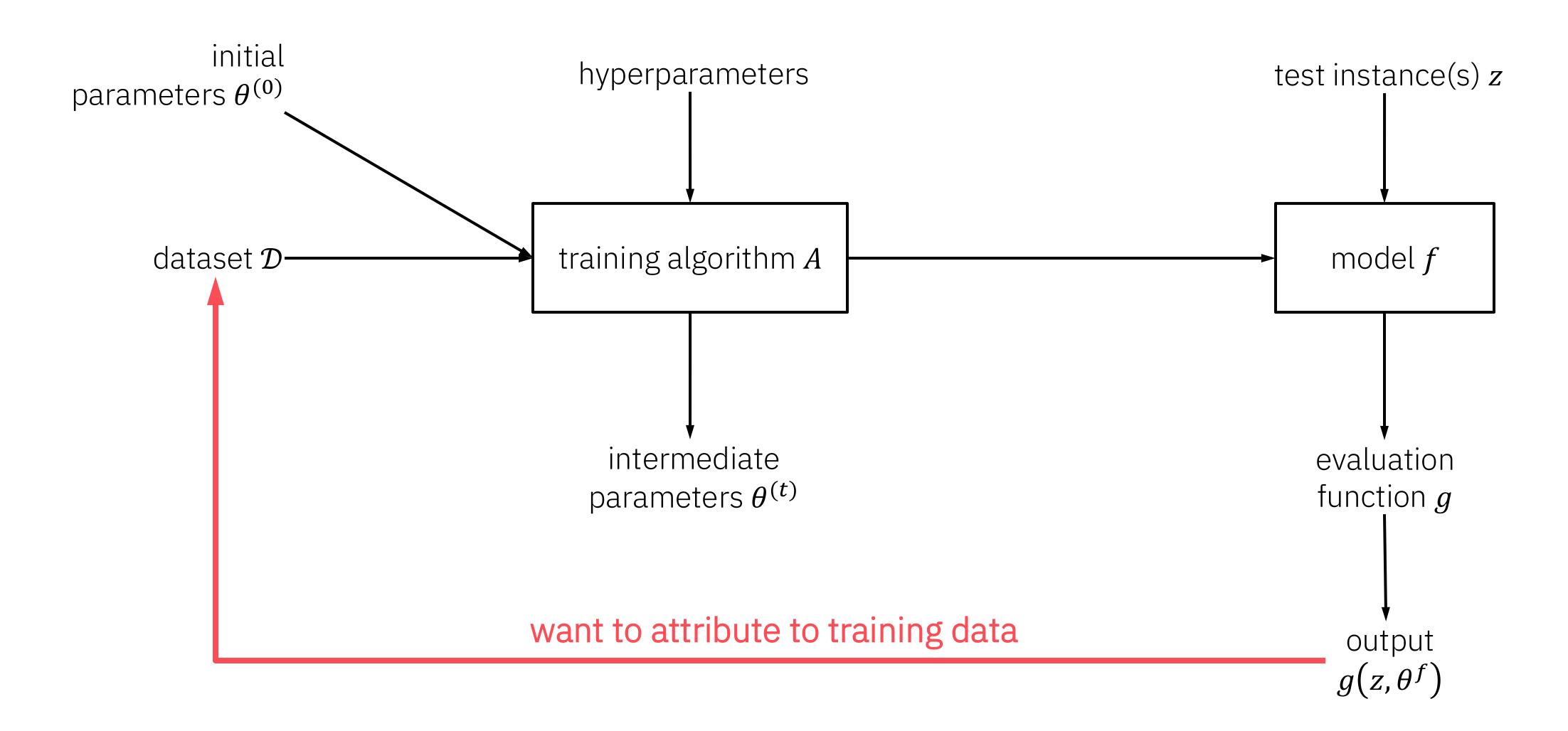
Dennis Wei

Inkit Padhi Soumya Ghosh Amit Dhurandhar Karthikeyan Natesan Ramamurthy Maria Chang

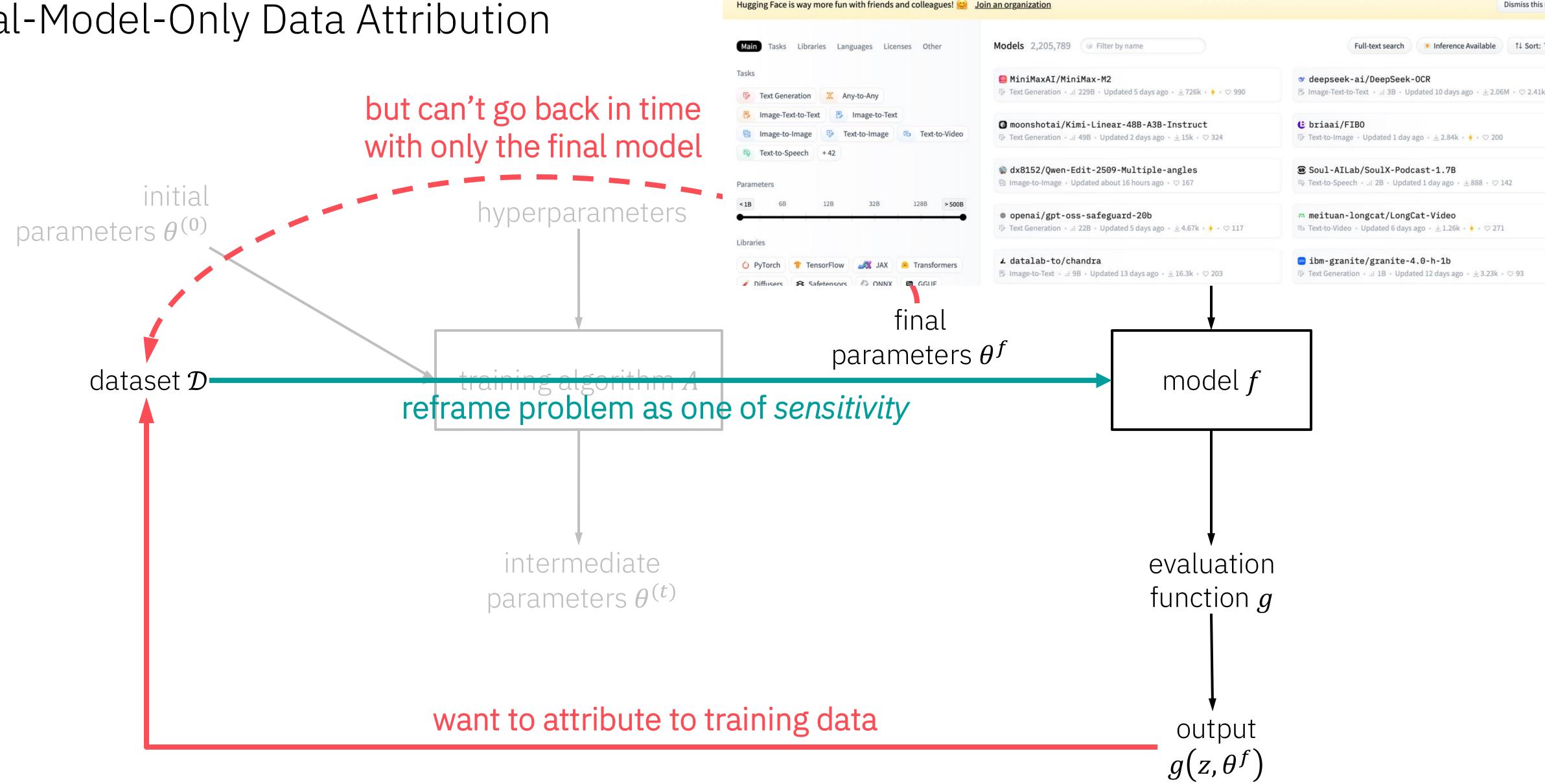
Training Data Attribution (TDA)



Different Levels of Access



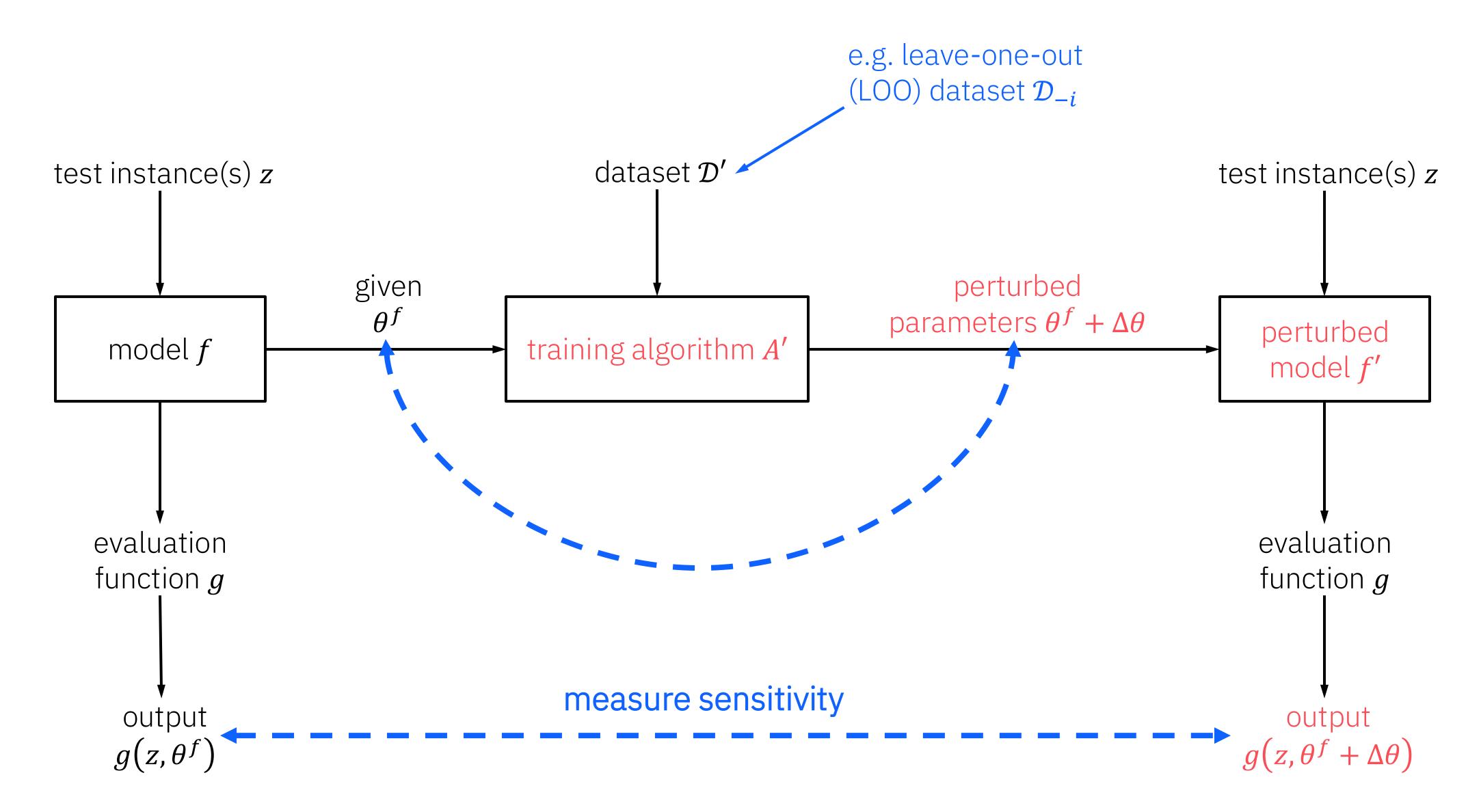
Final-Model-Only Data Attribution



Hugging Face Q Search models, datasets, users...

Dismiss this m

Further Training as a Gold Standard



Refinements to Further Training

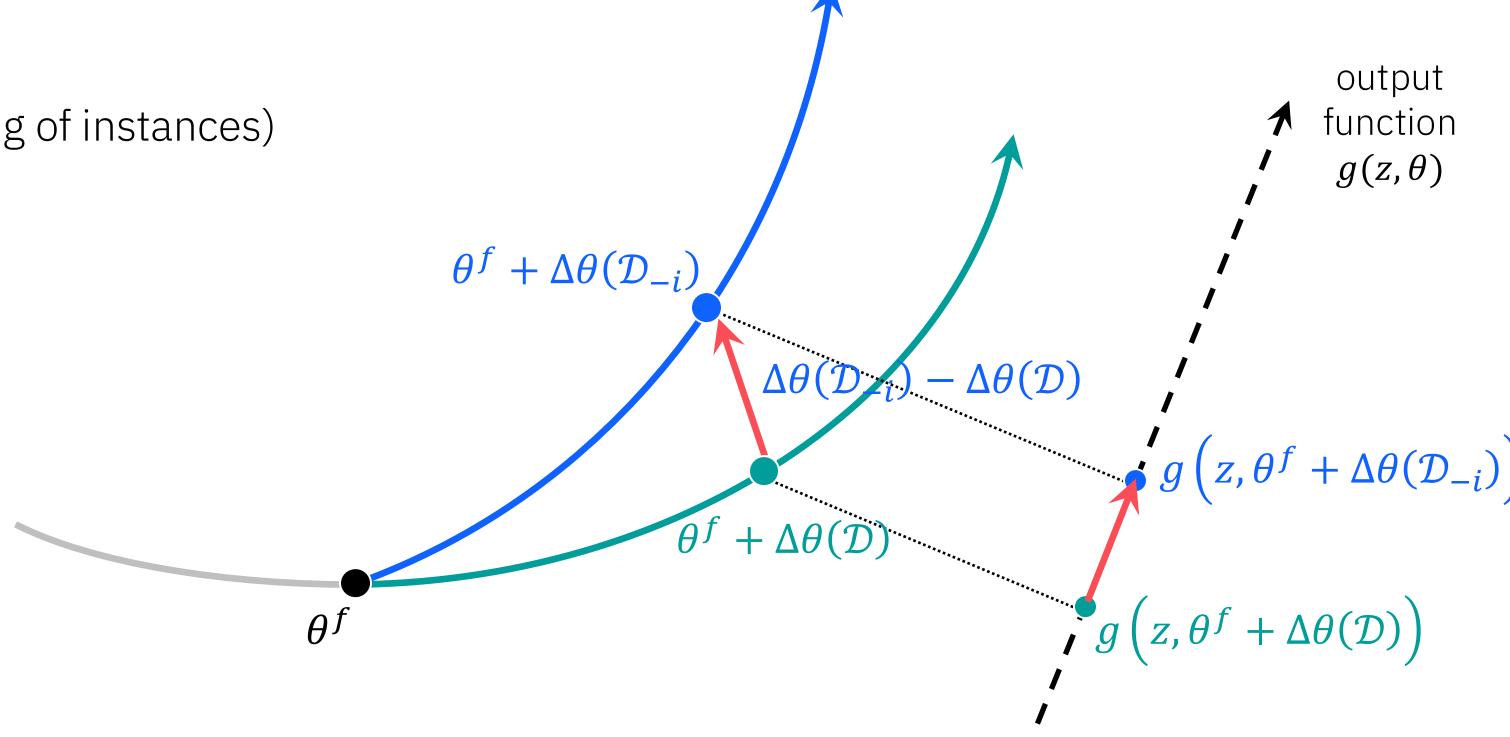
Non-convergence

- "Final" parameters θ^f not a stationary point
- Further training yields non-zero change $\Delta \theta(\mathcal{D})$ even on same dataset \mathcal{D}
- Adjust for this effect of further training alone

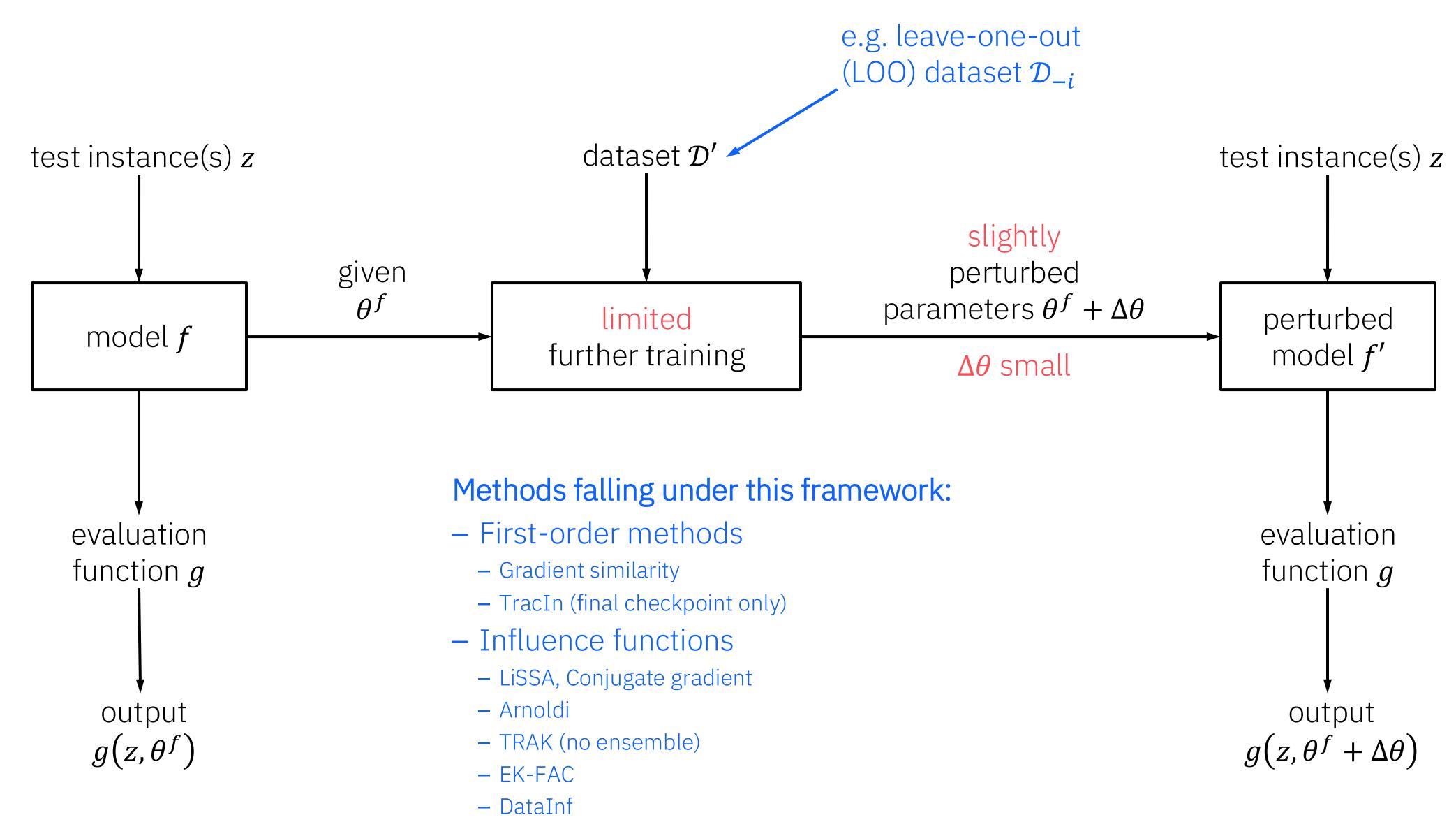
Stochasticity

• Training algorithm is stochastic (e.g. shuffling of instances)

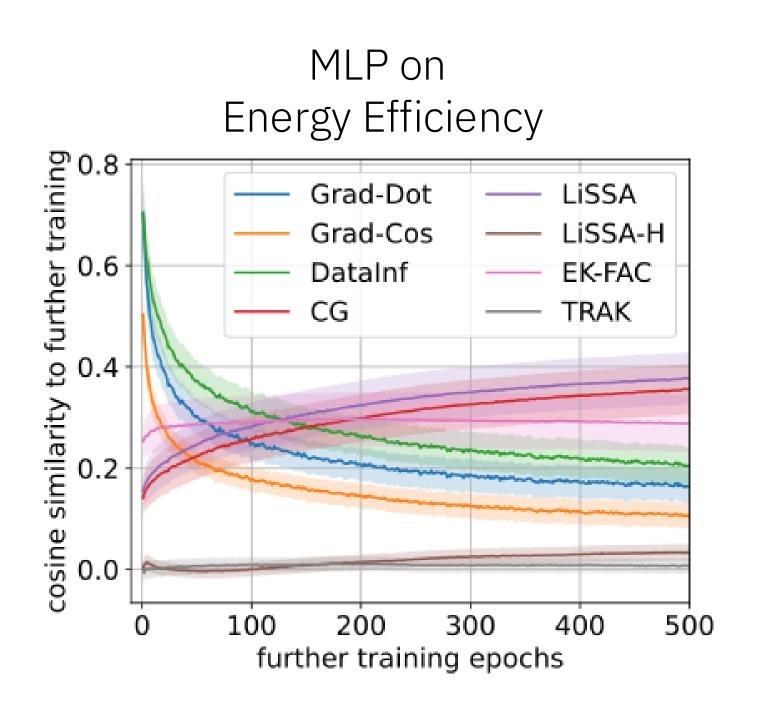
Take expectation over this randomness

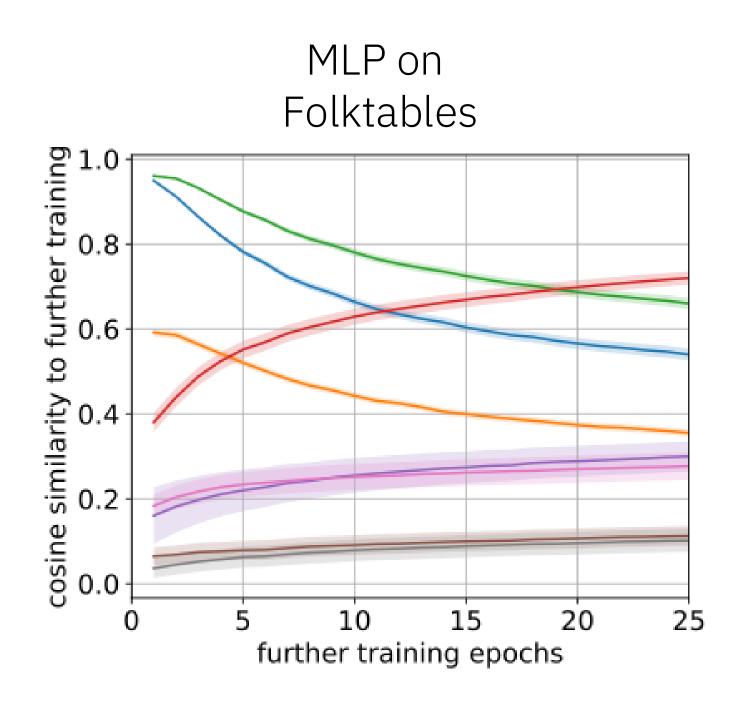


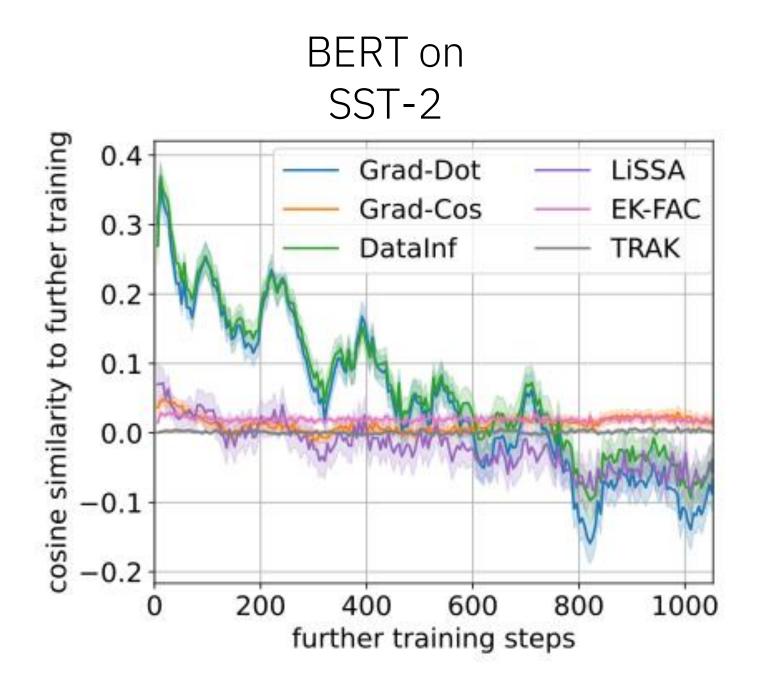
Existing Gradient-Based Methods Approximate Further Training



How Well Do Different Methods Approximate Further Training?







First-order(-like) methods: Approximation can be good initially but decays with further training

Influence function methods: More persistent but never as good

Summary

- Draw attention to final-model-only setting
- Reframe problem as one of quantifying sensitivity to training instances
- Further training as gold standard for quantifying sensitivity
- Existing gradient-based methods are approximations to further training
- Code for reproducibility: https://github.com/IBM/fimoda
- Discussion points (non-exhaustive):
 - Better approximate TDA methods for non-tabular models
 - Connections to data selection, etc.