

Optimization Inspired Few-Shot Adaptation for Large Language Models

Boyan Gao, Xin Wang, Yibo Yang, David A. Clifton

Motivation

- Limitation of existing few-shot adaption methods:
 - In-context learning (ICL) methods:
 - Instable performance to the format of prompts
 - No learnable parameters to capture the complicated features
 - PEFT (LoRA) based methods:
 - Overfitting to few-shot data
- In this work, we ask:
 - For few-shot adaptation, how can we develop an efficient method that avoids overfitting to few-shot data, as commonly observed in PEFT, while also overcoming ICL's lack of learnable parameters and extra inference cost?

Method

 Reframing the forward pass as a learnable preconditioned gradient descent (PGD) parameterised by LayerNorm:

$$Z_{t+1} = Z_t - P_t \nabla \mathcal{L}(Z_t), \quad P_t = \Gamma_t \cdot \frac{1}{\sigma_t}$$

Optimization with fast convergence:

$$\mathcal{J}(P) = \sum_{t=1}^{T-1} \frac{\|Z_t - Z_{t+1}\|}{\|Z_t - Z_{t-1}\|}$$

• Improving generalization through sharpness-aware regularization:

$$\mathcal{H}(P) = tr(P_t \nabla^2 \mathcal{L}(Z_t) P_t^T)$$

Preconditioned GD in LLM

LLMs learn layer-wise gradient descent in the forward pass

$$Z_{t+1} = Z_t - \eta
abla \mathcal{L}(Z_t)$$

s.t. $f_t(Z_t) = -\eta
abla \mathcal{L}(Z_t) = \operatorname{Attn}(Z_t)$

• Reframe this as as preconditioned gradient descent by treating LayerNorm as learnable preconditioner $P = \{P_t\}_{t=1}^T$

$$Z_{t+1} = Z_t - \Gamma_t \cdot rac{
abla \mathcal{L}(Z_t) - \mu_t}{\sigma_t}, \ \Gamma_t = \operatorname{diag}(\gamma_t)$$
 $Z_{t+1} = Z_t - P_t
abla \mathcal{L}(Z_t), \ P_t = \Gamma_t \cdot rac{1}{\sigma_t}$

Fast Convergence

Fast Convergence objective:

$$\mathcal{J}(P) = \sum_{t=1}^{T-1} \frac{\|Z_t - Z_{t+1}\|}{\|Z_t - Z_{t-1}\|}$$

• Step ratio: optimization efficiency and stability described by:

$$||Z_{t+1} - Z^*|| \le \rho_t ||Z_t - Z^*||, \ \rho_t < 1$$

• Implicitly optimizing the convergence bound of preconditioned gradient descent

Generalization

- Optimizing the local sharpness of loss landscape
 - Hutchinson approximation for the preconditioning Hessian trace

$$\mathcal{H}(P) = tr(P_t \nabla^2 \mathcal{L}(Z_t) P_t^T) \approx \frac{1}{\epsilon} \mathbb{E}_{\nu} \left[\nu^T P_t (\nabla \mathcal{L}(Z_t + \epsilon P_t \nu) - \nabla \mathcal{L}(Z_t)) \right]$$
$$\approx \frac{1}{\epsilon} \frac{1}{N} \sum_{i} \left[\nu_i^T P_t (\nabla \mathcal{L}(Z_t + \epsilon P_t \nu_i) - \nabla \mathcal{L}(Z_t)) \right]$$

The algorithm for this approximation is given in our paper

Experiments

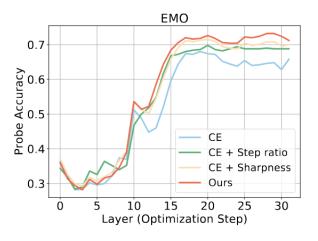
• SOTA on various few-shot benchmarks when competing with the baseline model

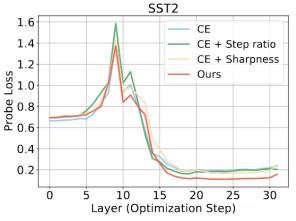
Table 1: Comparison between OFA and other baseline algorithms on Llama2-7B and Llama3-8B-Instruct. Mean accuracy and standard deviation across five random seeds are reported. **Best** results are highlighted in bold.

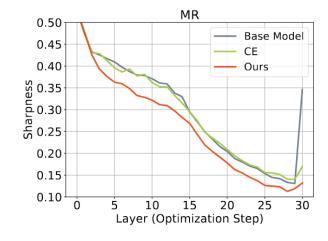
Dataset	SST-2	SST-5	TREC	AGNews	Subj	HateSp18	DBPedia	EmoC	MR
Method					Llama2-7B				
Zero-shot	83.00	27.00	50.00	70.20	51.40	54.20	72.00	41.80	73.60
Few-shot (ICL)	$94.44_{\pm 1.44}$	$41.72_{\pm 3.68}$	$77.32_{\pm 4.41}$	$85.68_{\pm 2.00}$	$52.56_{\pm 3.09}$	$70.24_{\pm 5.80}$	$96.64_{\pm0.48}$	$75.48_{\pm 1.63}$	$93.24_{\pm 0.50}$
Soft-prompt	$56.24_{\pm 6.99}$	$24.24_{\pm 2.96}$	$55.20_{\pm 4.14}$	$78.00_{\pm 7.60}$	$57.40_{\pm 4.93}$	$59.56_{\pm 6.96}$	$74.40_{\pm 6.43}$	$35.08_{\pm 5.29}$	$54.32_{\pm 1.76}$
Label-anchor	$83.32_{\pm 5.95}$	$27.68_{\pm 4.21}$	$77.48_{\pm 3.49}$	$83.72_{\pm 1.04}$	$53.00_{\pm 2.95}$	$64.52_{\pm 8.09}$	$81.40_{\pm 3.67}$	$59.12_{\pm 10.60}$	$84.40_{\pm 5.89}$
Task-vector	$81.44_{\pm 4.73}$	$25.96_{\pm 0.59}$	$65.68_{\pm 1.93}$	$79.68_{\pm 4.07}$	$58.56_{\pm 4.91}$	$67.68_{\pm 3.70}$	$89.48_{\pm 2.58}$	$44.64_{\pm 3.53}$	$82.32_{\pm 5.37}$
IA3	$93.28_{\pm 2.29}$	$46.08_{\pm 2.11}$	$84.40_{\pm 5.99}$	$87.04_{\pm 1.97}$	$71.92_{\pm 8.08}$	$72.44_{\pm 2.59}$	$94.68_{\pm 1.09}$	$64.32_{\pm 1.95}$	$88.80_{\pm 2.28}$
I2CL	$87.68_{\pm 2.47}$	$39.12_{\pm 2.69}^{-}$	$78.56_{\pm 5.32}$	$85.48_{\pm 1.16}$	$73.84_{\pm 3.84}$	$69.88_{\pm 5.67}$	$90.16_{\pm 1.86}$	$63.72_{\pm 1.37}$	$87.68_{\pm 2.26}$
OFA (Ours)	$95.84_{\pm0.41}$	$50.36_{\pm 3.28}$	$85.92_{\pm 1.90}$	$89.00_{\pm 1.26}$	$88.40_{\pm 4.76}$	$83.04_{\pm 3.72}$	$97.72_{\pm 0.52}$	$76.60_{\pm 2.39}$	$94.36_{\pm 1.13}$
	Llama3-8B-Instruct								
Zero-shot	93.00	35.80	71.00	80.40	50.80	67.80	67.40	53.60	86.40
Few-shot (ICL)	$96.48_{\pm0.48}$	$46.72_{\pm 2.64}$	$79.92_{\pm 5.83}$	$89.64_{\pm0.59}$	$57.48_{\pm 7.08}$	$52.72_{\pm 2.35}$	$97.00_{\pm0.28}$	$65.28_{\pm 4.29}$	$93.12_{\pm0.16}$
Soft-prompt	$84.68_{\pm 7.71}$	$38.40_{\pm 5.68}$	$75.68_{\pm 8.17}$	$84.96_{\pm 3.80}$	$73.28_{\pm 5.41}$	$62.72_{\pm 5.54}$	$82.88_{\pm 6.45}$	$55.32_{\pm 9.74}$	$75.76_{\pm 7.71}$
Label-anchor	$93.36_{\pm 2.39}$	$40.54_{\pm 5.44}$	$78.28_{\pm 4.07}$	$84.64_{\pm 1.61}$	$54.16_{\pm 2.25}$	$69.48_{\pm 5.43}$	$87.48_{\pm 3.04}$	$59.36_{\pm 2.48}$	$88.20_{\pm 3.69}$
Task-vector	$94.80_{\pm 2.02}$	$56.42_{\pm 1.15}$	$79.83_{\pm 1.52}$	$89.21_{\pm 0.58}$	$76.08_{\pm 1.23}$	$67.12_{\pm 0.32}$	$79.52_{\pm 1.84}$	$57.96_{\pm 4.59}$	$86.52_{\pm 0.64}$
IA3	$94.32_{\pm 0.82}$	$49.24_{\pm 2.06}$	$87.60_{\pm 3.46}$	$88.36_{\pm 1.80}$	$82.04_{\pm 7.43}$	$77.20_{\pm 4.37}$	$92.56_{\pm 1.82}$	$68.04_{\pm 2.24}$	$91.76_{\pm 0.43}$
I2CL	$90.84_{\pm 0.98}$	$48.96_{\pm 2.48}$	$79.60_{\pm 6.22}$	$88.96_{\pm 2.03}$	$81.48_{\pm 4.68}$	$65.88_{\pm 3.61}$	$91.20_{\pm 2.03}$	$64.32_{\pm 2.05}$	$88.88_{\pm0.61}$
OFA (Ours)	$oxed{97.08_{\pm0.27}}$	$58.32_{\pm 2.74}$	$89.06_{\pm 1.49}$	$91.84_{\pm0.61}$	$92.64_{\pm 3.43}$	$89.47_{\pm0.47}$	$97.92_{\pm 1.06}$	$79.24_{\pm 4.87}$	$94.56_{\pm 0.51}$

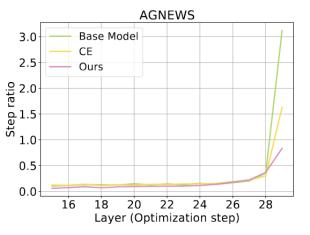
Empirical Analysis

- Probe analysis about the properties introduced by our proposed loss function
 - Layer wise-accuracy, loss, sharpness and step ratio









Thanks