

Backpropagation-Free Test-Time Adaptation via Probabilistic Gaussian Alignment

Youjia Zhang

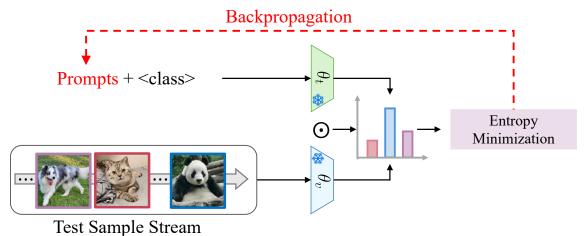
Youngeun Kim

Young-Geun Choi

Hongyeob Kim

Huiling Liu

Sungeun Hong


Challenges

Test-Time Adaptation (TTA): an effective way to improve zero-shot robustness under distribution shifts by adapting to unlabeled test data during inference

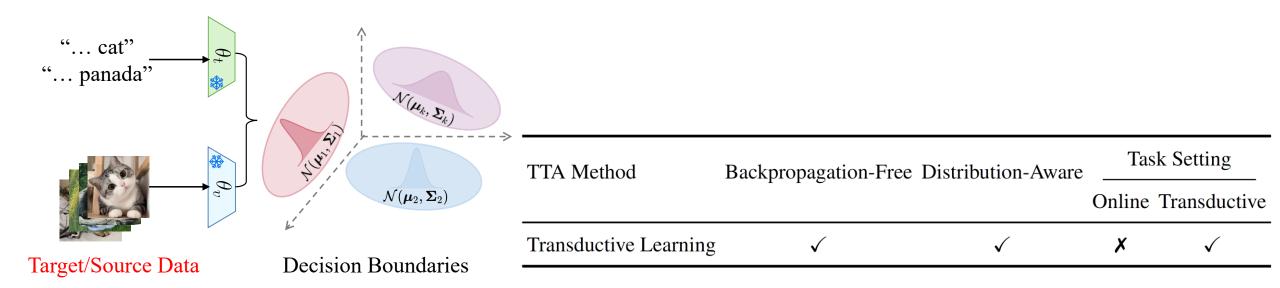
Limitations

- High computational cost (🛫
- Lack explicit class distribution modeling (**)

TTA Method	Backpropagation-Free	Distribution-Aware	Task Setting			
	1 1 2			Transductive		
Prompt Tuning	Х	×	√	X		
Adapter Tuning	X	X	\checkmark	×		
Similarity Score	·	X	\checkmark	X		

(a) Backpropagation-required TTA

(b) Online TTA Methods


Challenges

• Gaussian Discriminant Analysis (GDA): a classical probabilistic framework that models class-conditional feature distributions and assigns labels based on likelihood estimation

Limitations

• Need full target/source access → not feasible for online settings

(a) GDA-based Transductive TTA

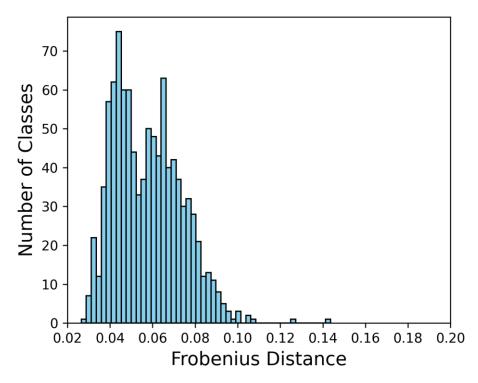
(b) Transductive Learning in TTA

Core Idea

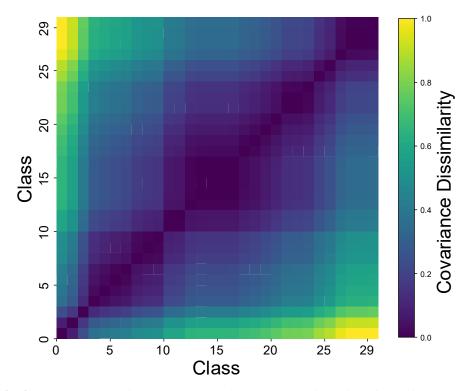
 Can we design a backpropagation-free and distribution-aware TTA framework that seamlessly supports both online and transductive adaptation?

TTA Method	Backpropagation-Free	Distribution-Aware	Task Setting			
	1 1 0		Online	Transductive		
Prompt Tuning	X	X	√	X		
Adapter Tuning	X	×	\checkmark	×		
Similarity Score	\checkmark	×	\checkmark	×		
Transductive Learning	\checkmark	\checkmark	X	\checkmark		
ADAPT (Ours)	\checkmark	\checkmark	\checkmark	\checkmark		

Motivation


- Observation 1: Gaussianity of class conditional features
 - Class-wise features exhibit strong Gaussian patterns in CLIP space

	Low-dim	Freq of p>0.05 (%) ↑	p-value Avg. ↑
ler	2	100	0.39
Henze–Zirkler	4	99.90	0.32
e–Z	6	99.00	0.27
enz	8	96.30	0.22
H	10	92.90	0.19
11	2	100	0.31
Shapiro-Wilk	4	100	0.21
iro.	6	99.50	0.16
hap	8	96.30	0.13
S	10	92.20	0.11


Projection-based normality test results across class-conditional features

Motivation

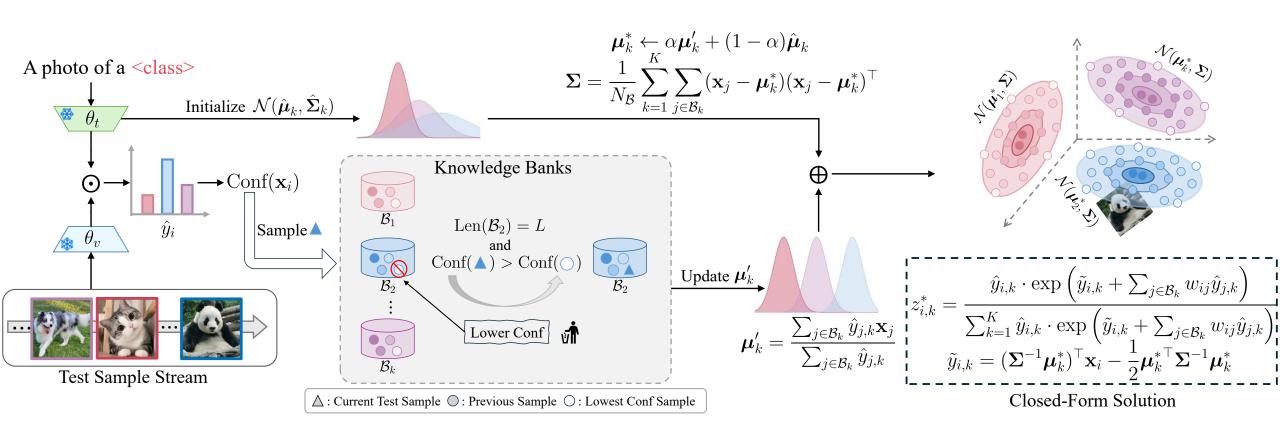
- Observation 2: Strong alignment of class-wise Σ_k and shared covariance Σ
 - Class-wise covariance matrices are nearly identical, supporting a shared-covariance assumption

(a) Frobenius distance between Σ_k and Σ

(b) class-wise covariance dissimilarity

Motivation

- Observation 1: Gaussianity of class conditional features
- Observation 2: Strong alignment of class-wise Σ_k and shared covariance Σ



Assumption: CLIP features conditioned on class k follow a

Gaussian distribution with a shared covariance matrix:

$$\mathbb{P}_{i,k} = \mathbb{P}(\mathbf{x}_i|y_k) = \mathcal{N}(\mathbf{x}_i;oldsymbol{\mu}_k,oldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^d|oldsymbol{\Sigma}|}} \mathrm{exp}igg(-rac{1}{2}(\mathbf{x}_i-oldsymbol{\mu}_k)^ opoldsymbol{\Sigma}^{-1}(\mathbf{x}_i-oldsymbol{\mu}_k)igg)$$

ADAPT: Backpropagation-free and Distribution-aware Test-time Adaptation

Overview of Online ADAPT

Online ADAPT

• Backpropagation-free TTA via GDA: Reframe TTA as a probabilistic inference task by modeling class-conditional likelihoods.

$$\tilde{y}_{i,k} = \mathbf{w}_k^{\top} \mathbf{x}_i + b_k$$
, where $\mathbf{w}_k = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k, b_k = -\frac{1}{2} \boldsymbol{\mu}_k^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k$.

Correcting Online Likelihood Bias via Constructed Knowledge Banks

$$\mathcal{L}_{\text{online}}(z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -z_i^{\top} \log \mathbb{P}_i + \mathcal{R}(z_i; \hat{y}_i) + \mathcal{R}(z_i; \mathcal{B}),$$
where $\mathcal{R}(z_i; \hat{y}_i) = \text{KL}(z_i || \hat{y}_i) + \beta \sum_{k=1}^{K} \text{KL}\left(\mathcal{N}(\hat{\boldsymbol{\mu}}_k, \hat{\boldsymbol{\Sigma}}_k) || \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma})\right),$

$$\mathcal{R}(z_i; \mathcal{B}) = -\sum_{j \in \mathcal{B}} \hat{y}_j^{\top} \log \mathbb{P}_j - \sum_{j \in \mathcal{B}} w_{ij} z_i^{\top} \hat{y}_j.$$

Closed-form Solution without Sub-iterations

$$z_{i,k}^* = \frac{\hat{y}_{i,k} \cdot \exp\left(\tilde{y}_{i,k} + \sum_{j \in \mathcal{B}_k} w_{ij} \hat{y}_{j,k}\right)}{\sum_{k=1}^K \hat{y}_{i,k} \cdot \exp\left(\tilde{y}_{i,k} + \sum_{j \in \mathcal{B}_k} w_{ij} \hat{y}_{j,k}\right)},$$

$$\mu_k^* \leftarrow \alpha \mu_k' + (1 - \alpha) \hat{\mu}_k, \quad \text{where } \mu_k' = \frac{\sum_{j \in \mathcal{B}_k} \hat{y}_{j,k} \mathbf{x}_j}{\sum_{j \in \mathcal{B}_k} \hat{y}_{j,k}}, \alpha = \frac{\sum_{j \in \mathcal{B}_k} \hat{y}_{j,k}}{\sum_{j \in \mathcal{B}_k} \hat{y}_{j,k}}.$$

$$\Sigma = \frac{1}{N_{\mathcal{B}}} \sum_{k=1}^K \sum_{j \in \mathcal{B}_k} (\mathbf{x}_j - \boldsymbol{\mu}_k^*) (\mathbf{x}_j - \boldsymbol{\mu}_k^*)^\top, \quad \Sigma^{-1} = d\left((N_{\mathcal{B}} - 1)\boldsymbol{\Sigma} + \operatorname{tr}(\boldsymbol{\Sigma})I_d\right)^{-1}.$$

- Transductive ADAPT
 - Extend the online regularized objective to a transductive objective

$$\mathcal{L}_{trans}(z, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\sum_{i=1}^{N} z_i^{\top} \log \mathbb{P}_i + \sum_{i=1}^{N} \mathcal{R}(z_i; \hat{y}_i) + \sum_{i=1}^{N} \mathcal{R}(z_i; \mathcal{B}).$$

Closed-form Solution without Sub-iterations

$$z_{i,k}^* = \frac{\hat{y}_{i,k} \cdot \exp\left(\tilde{y}_{i,k} + \sum_{j \in \mathcal{B}_k} w_{ij} \hat{y}_{j,k}\right)}{\sum_{k=1}^K \hat{y}_{i,k} \cdot \exp\left(\tilde{y}_{i,k} + \sum_{j \in \mathcal{B}_k} w_{ij} \hat{y}_{j,k}\right)}$$

One-pass estimate for class means

$$\boldsymbol{\mu}_{k}^{*} \leftarrow \alpha \boldsymbol{\mu}_{k}' + (1 - \alpha) \hat{\boldsymbol{\mu}}_{k}, \boldsymbol{\mu}_{k}' = \frac{\sum_{i=1}^{N} \hat{y}_{i,k} \mathbf{x}_{i} + \sum_{j \in \mathcal{B}_{k}} \hat{y}_{j,k} \mathbf{x}_{j}}{\sum_{i=1}^{N} \hat{y}_{i,k} + \sum_{j \in \mathcal{B}_{k}} \hat{y}_{j,k}}, \alpha = \frac{\sum_{i=1}^{N} \hat{y}_{i,k} + \sum_{j \in \mathcal{B}_{k}} \hat{y}_{j,k}}{\sum_{i=1}^{N} \hat{y}_{i,k} + \sum_{j \in \mathcal{B}_{k}} \hat{y}_{j,k}}.$$

Algorithm 1 ADAPT: Online TTA

- 1: **Input**: Test data \mathcal{D}_u , class prototypes **t** and knowledge bank size L
- 2: Initialize: $\hat{\mu} \leftarrow \mathbf{t}$
- 3: for $\mathbf{x}_i \in \mathcal{D}_u$ do
- 4: Compute $Conf(\mathbf{x}_i)$ by Eq. (2)
- 5: Update \mathcal{B}_k with \mathbf{x}_i if high-confidence
- 6: Update μ^* and Σ by Eq. (9)-(10)
- 7: Compute z_i^* by Eq. (8)
- 8: end for
- 9: **return** $\{z_i^*\}_{i=1}^N$

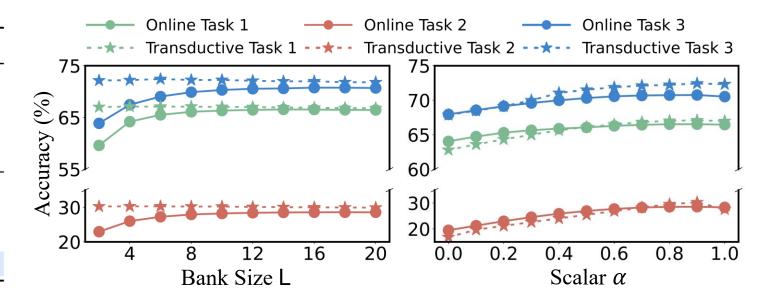
Algorithm 2 ADAPT: Transductive TTA

- 1: **Input**: Test data $\mathcal{D}_u = \{\mathbf{x}_i\}_{i=1}^N$, class prototypes **t** and knowledge bank size L
- 2: Initialize: $\hat{\mu} \leftarrow \mathbf{t}$
- 3: Compute Conf(x) for all data by Eq. (2)
- 4: for $\mathcal{B}_k \in \mathcal{B}$ do
- 5: Cache Top-L confidence samples
- 6: end for
- 7: Update Σ and μ^* by Eq. (10)-(67)
- 8: Compute $z^* = \{z_i^*\}_{i=1}^N$ by Eq. (8)
- 9: return z^*

• Task 1: Natural Distribution Shift

	Method	BP-free	ImageNet	ImageNet-A	ImageNet-V	ImageNet-R	ImageNet-S	OOD Avg.	Avg.
	CLIP [39]	-	66.74	47.79	60.89	73.99	46.12	57.20	59.11
	Tip-Adapter [63]	X	70.75	51.04	63.41	77.76	48.88	60.27	62.37
	TPT [33]	X	68.98	54.77	63.45	77.06	47.97	60.81	62.45
	DiffTPT [9]	X	70.30	55.68	65.10	75.00	46.80	60.65	62.58
	C-TPT [55]	X	68.50	51.60	62.70	76.00	47.90	59.55	61.34
	DMN [65]	X	72.25	58.28	65.17	78.55	53.20	63.80	65.49
	DPE [61]	X	71.91	59.63	65.44	80.40	52.26	64.43	65.93
ne	TPS [46]	X	70.38	59.21	63.80	77.49	49.57	62.52	64.09
Online	DynaPrompt [54]	X	69.61	56.17	64.67	78.17	48.22	61.81	63.37
0	$B^{2}TPT[34]$	X	69.57	55.26	65.40	78.64	49.53	62.21	63.68
	MTA [57]	\checkmark	70.08	58.06	64.24	78.33	49.61	62.56	64.06
	TDA [21]	\checkmark	69.51	60.11	64.67	80.24	50.54	63.89	65.01
	ZERO [7]	\checkmark	69.31	59.61	64.16	77.22	48.40	62.35	63.74
	AWT [70]	\checkmark	71.32	60.33	65.15	80.64	51.60	64.43	65.81
	RA-TTA [24]	\checkmark	70.58	59.21	64.16	79.68	50.83	63.47	64.89
	BCA [67]	\checkmark	70.22	61.14	64.90	80.72	50.87	64.41	65.57
	TCA [52]	\checkmark	68.88	50.13	62.10	77.11	48.95	59.57	61.43
	Dota [12]	\checkmark	70.68	61.19	64.41	81.17	51.33	64.53	65.76
	ADAPT	\checkmark	70.91	63.32	64.64	80.66	53.13	65.44	66.53
	GDA-CLIP [51]	√	64.13	19.72	55.67	55.30	34.32	41.25	45.83
S	TransCLIP [59]	\checkmark	70.30	49.50	62.30	75.00	49.70	59.13	61.36
Trans.	Frolic [69]	\checkmark	70.90	60.40	64.70	80.70	53.30	64.78	66.00
	TIMO [28]	\checkmark	64.63	22.06	56.40	58.47	35.96	43.22	47.50
	ADAPT	\checkmark	71.56	63.77	65.59	80.64	53.87	65.97	67.09

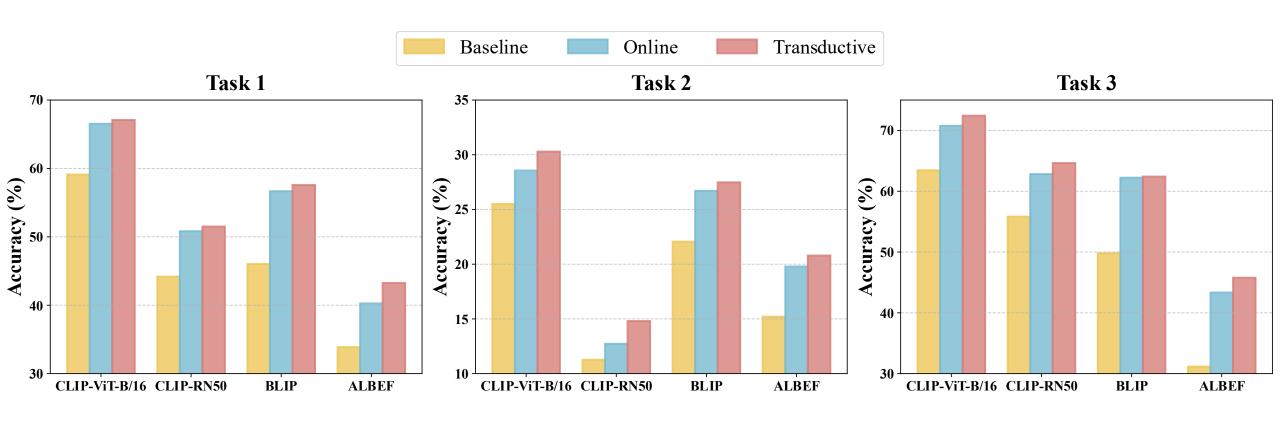
• Task 2: Corruption Robustness

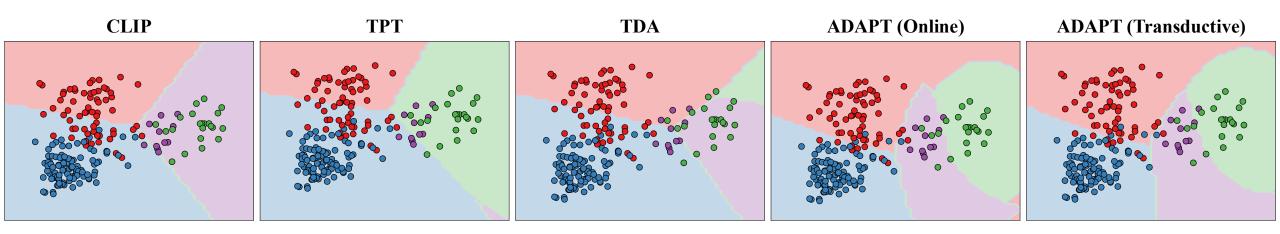

	Method		Blur			Weather			Digital			Noise			Avg.		
	Method	Defo.	Glas.	Moti.	Zoom	Snow	Fros.	Fog	Brig.	Cont.	Elas.	Pix.	JPEG	Gauss.	Shot	Impu.	Avg.
	CLIP [39]	24.25	15.71	24.46	22.60	33.08	31.06	37.61	55.62	17.11	13.43	33.04	33.70	13.25	14.16	13.48	25.50
4)	TPT [33]	27.56	15.48	26.16	26.94	36.74	34.28	39.38	60.22	16.96	15.64	40.74	37.90	10.64	11.94	10.92	27.43
line	DiffTPT [9]	25.63	16.96	26.74	25.40	35.99	34.57	39.83	59.01	17.32	17.16	38.43	35.47	12.97	13.60	13.21	27.49
On	TDA [21]	26.53	17.91	27.35	25.90	36.50	34.84	40.53	58.57	20.16	16.62	35.65	36.69	15.42	16.46	16.03	28.34
	DMN [65]	26.06	17.19	26.61	25.23	34.81	33.48	38.93	58.70	19.38	15.40	35.32	36.49	14.33	15.33	14.69	27.46
	ADAPT	26.30	18.01	27.31	25.54	36.19	34.67	40.96	60.29	19.95	16.09	37.44	37.22	15.76	16.84	15.90	28.56
	ZLaP [20]	24.88	16.13	25.77	24.36	34.43	32.63	38.56	58.42	17.53	14.21	33.72	35.52	12.83	14.03	13.27	26.42
Frans.	TransCLIP [59]	25.35	16.40	25.53	23.22	34.58	32.47	39.65	59.04	17.72	14.76	35.22	35.53	14.82	16.11	15.60	27.07
Tre	StatA [58]	20.23	13.29	20.38	18.84	31.30	29.80	34.58	54.79	11.24	11.80	26.31	33.20	9.58	10.52	10.12	22.40
	ADAPT	27.98	19.78	29.00	27.38	38.09	36.44	42.43	62.21	21.94	18.40	39.89	38.23	17.71	18.81	18.09	30.29

• Task 3: Fine-Grained Categorization

	Method	BP-free	Aircraft	Caltech	Cars	DTD	EuroSAT	Flower	Food101	Pets	Sun397	UCF101	Avg.
	CLIP [39]	-	23.70	92.98	65.24	44.44	41.42	67.28	83.80	87.98	62.55	65.08	63.45
	TPT [33]	X	24.78	94.16	66.87	47.75	42.44	68.98	84.67	87.79	65.50	68.04	65.10
	DiffTPT [9]	X	25.60	92.49	67.01	47.00	43.13	70.10	87.23	88.22	65.74	68.22	65.47
	C-TPT [55]	X	24.00	93.60	65.80	46.00	43.20	79.80	83.70	88.20	64.80	65.70	64.48
	DMN [65]	X	30.03	95.38	67.96	55.85	59.43	74.49	85.08	92.04	70.18	72.51	70.30
	TPS [29]	X	26.27	94.56	67.00	53.80	42.11	71.69	84.78	87.82	68.25	71.18	66.75
	DPE [61]	X	28.95	94.81	67.31	54.20	55.79	75.07	86.17	91.14	70.07	70.44	69.40
e	HisTPT [62]	X	26.90	94.50	69.20	48.90	49.70	71.20	89.30	89.10	67.20	70.10	67.61
Online	DynaPrompt [54]	X	24.33	94.32	67.65	47.96	42.28	69.95	85.42	88.28	66.32	68.72	65.52
O	MTA [57]	\checkmark	25.32	94.13	66.36	45.59	38.71	68.26	84.95	88.22	64.98	68.11	64.46
	TDA [21]	\checkmark	23.91	94.24	67.28	47.40	58.00	71.42	86.14	88.63	67.62	70.66	67.53
	ZLaP [20]	\checkmark	25.40	93.10	65.60	48.60	55.60	73.50	86.90	87.10	67.40	71.50	67.47
	ZERO [7]	\checkmark	25.21	93.66	68.04	46.12	34.33	67.68	86.53	87.75	65.03	67.77	64.21
	BCA [67]	\checkmark	28.59	94.69	66.86	53.49	56.63	73.12	85.97	90.43	68.41	67.59	68.58
	OGA [10]	\checkmark	23.20	93.60	68.10	47.90	54.20	69.20	85.60	89.40	67.90	71.40	67.05
	TCA [52]	\checkmark	24.87	93.63	65.33	46.16	70.43	73.33	85.31	89.53	65.92	72.38	68.69
	Dota [12]	\checkmark	25.59	94.32	69.48	47.87	57.65	74.67	87.02	91.69	69.70	72.06	69.01
	ADAPT	✓	28.95	94.48	68.19	55.20	68.19	75.56	83.81	92.01	70.57	70.66	70.76
	GDA-CLIP [51]	\checkmark	18.69	87.53	60.78	46.81	49.92	72.65	78.25	89.90	63.60	68.70	63.68
	ZLaP [20]	\checkmark	26.30	91.80	66.80	46.00	57.70	67.90	87.20	87.90	67.80	73.80	67.32
Trans.	TransCLIP [59]	\checkmark	26.90	92.70	69.40	49.50	65.10	76.70	87.10	92.60	68.90	74.40	70.33
<u> </u>	Frolic [69]	\checkmark	31.40	95.10	69.10	56.10	58.50	74.80	87.10	92.90	70.80	75.20	71.10
	StatA [58]	\checkmark	24.70	94.20	68.00	48.40	67.30	75.20	87.10	92.40	68.70	73.50	69.95
	ADAPT	\checkmark	30.81	95.46	71.32	56.86	65.93	80.11	85.15	92.59	72.25	73.86	72.43
	Oracle ADAPT	✓	41.88	98.26	82.89	60.87	56.51	81.93	85.74	92.61	80.04	90.14	77.09

Ablation Studies and Hyperparameter analysis


$\overline{\mathcal{B}}$	Update μ	Update Σ	Task 1	Task 2	Task 3
X	Х	X	59.11	25.50	63.45
X	×	\checkmark	49.64	9.58	60.02
X	\checkmark	×	61.54	25.42	67.03
X	\checkmark	\checkmark	49.65	9.58	60.04
\checkmark	Х	Х	64.89	25.08	67.06
\checkmark	×	\checkmark	64.05	19.49	67.95
\checkmark	\checkmark	X	65.27	25.67	67.43
\checkmark	\checkmark	\checkmark	66.53	28.56	70.76


• Efficiency Comparison on ImageNet

	Method	BP-free	Acc (%) ↑	Gain (%) ↑	Time ↓	Mem.(GB) ↓
Online	CLIP [39] TPT [33] DiffTPT [9] TDA [21] TPS [46] ADAPT	✓ X X ✓	66.74 68.95 70.30 69.51 70.38 70.91	2.21 3.56 2.77 3.64 4.17	8m 9h 45m > 20h 50m 1h 19m 1h 11m	0.79 4.29 4.60 0.84 1.71 0.93
Trans.	GDA-CLIP [51] TransCLIP [59] StatA [58] ADAPT	✓ ✓ ✓	64.13 70.30 69.90 71.56	-2.61 3.56 3.16 4.82	1.31m 1.34m 1.5m 0.73m	10.03 16.17 20.74 3.37

Evaluation with Different VLMs

Visualization of Decision Boundaries on ImageNet-A

Thank you

Project page is here!