

Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective

Yang Zhang (Speaker) Tsinghua University

Chongjie Zhang Washington University in St. Louis

Chenjia Bai Institute of AI, China Telecom

Background

- Two primary challenges in modeling Multi-Agent dynamics
 - Exponentially expanded joint action space
 - Additional inter-dependencies among agents (more complex than singleagent scenario)
- Current Multi-Agent world model dealt with these via:
 - Centralized modeling, but suffer from heavy computational cost
 - Decentralized modeling with CTDE principle (currently predominant)
 - ② Is it all we can do to deal with Multi-Agent dynamics?

Background

- Potential limitations from Decentralized modeling with CTDE
- 1. Mismatch on the transition function estimation

individual modeling + additional communication modules

V.S.

the global state transition in Dec-POMDP or global MDP

- 2. No supervision signal for the aggregated feature (may hinder training)
- 3. Lack of efficient utilization of global state in modeling (least important point:)

Motivation

• Therefore,

"Can we develop a centralized modeling scheme that maintains consistency, while keeping computational complexity manageable?"

- Core insight lies in: <u>Uncertainty about the next global state progressively</u> <u>decreases as individual agent actions are revealed</u>.
- This observation mirrors the reverse process in diffusion models.
 - We can realize it via the diffusion process formulation.

Re-formulation

Assumption 1 (Diffusion-Inspired Decomposition of Multi-Agent Dynamics). In our diffusion-inspired formulation with the descending order of agent id (n, n-1, ..., 1) as the conditioning order, the global state transition $P(s_{t+1}|s_t, a_t^{1:n})$ yields the next state in a manner akin to a typical reverse diffusion process, i.e., satisfying

$$P(s_{t+1}, s_{t+1}^{(1):(n)}|s_t, a_t^{1:n}) = p(s_{t+1}^{(n)}) \prod_{k=1}^n p(s_{t+1}^{(k-1)}|s_{t+1}^{(k)}, a_t^k, s_t),$$
(6)

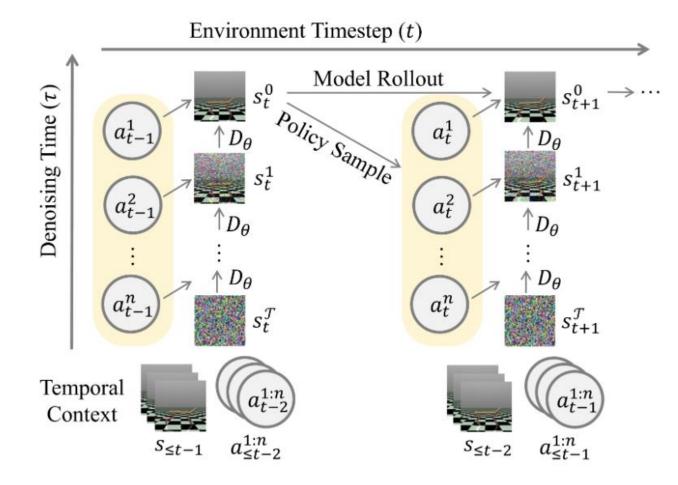
where $s_{t+1}^{(n)}$ is corrupted with the noise of maximum level σ_n , practically indistinguishable from pure Gaussian noise.

Theorem 2 (ELBO under the Diffusion-Inspired Formulation). *Under Assumption* 1, the log-likelihood of the multi-agent global state transition (i.e., the evidence of the transition) is lower bounded as follows,

$$\log P(s_{t+1}|s_{t}, a_{t}^{1:n}) \geq \underbrace{\mathbb{E}_{q(s_{t+1}^{(1)}|s_{t+1}^{(0)})}[\log p(s_{t+1}^{(0)}|s_{t+1}^{(1)}, a_{t}^{1}, s_{t})]}_{reconstruction \ term} - \underbrace{\mathbb{E}_{q(s_{t+1}^{(k)}|s_{t+1}^{(0)})}[\log p(s_{t+1}^{(0)}|s_{t+1}^{(1)}, a_{t}^{1}, s_{t})]}_{prior \ matching \ term} - \underbrace{\mathbb{E}_{q(s_{t+1}^{(k)}|s_{t+1}^{(0)})}\left[\mathbb{D}_{KL}(q(s_{t+1}^{(k-1)}|s_{t+1}^{(k)}, s_{t+1}^{(0)}) \| p(s_{t+1}^{(k-1)}|s_{t+1}^{(k)}, a_{t}^{k}, s_{t}))\right]}_{denoising \ matching \ term}$$
(7)

Practical Implementation

- Key implementation details:
 - Permutation Invariance:
 expectation over all possible
 agent orderings, making the
 model robust to arbitrary agent
 ordering.
 - Condition-Independent
 Noising Process: free to choose any noise levels for our sequential formulation.

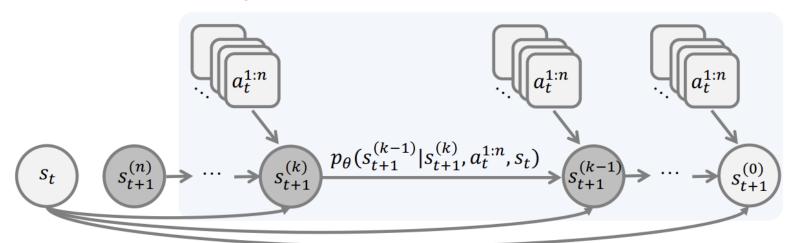


$$\mathcal{L}(\theta) = \mathbb{E}_{\{\sigma_{1},...,\sigma_{n}\} \sim \sigma(\tau)} \mathbb{E}_{\rho \sim \text{Perm}\{1,2,...,n\}} \left[\sum_{k=1}^{n} \|D_{\theta}(s_{t+1}^{(k)}; \sigma_{k}, s_{t}, a_{t}^{i_{k}}) - s_{t+1}\|^{2} \right]$$

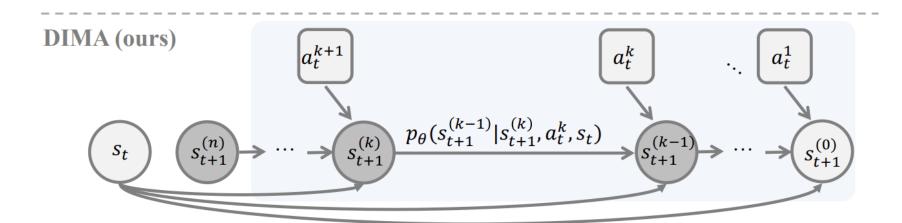
$$= \mathbb{E}_{\tau} \mathbb{E}_{k \sim \text{Uniform}\{1,2,...,n\}} \left[\|D_{\theta}(s_{t+1}^{\tau}; \sigma(\tau), s_{t}, a_{t}^{k}) - s_{t+1}\|^{2} \right],$$

Model Comparison

Conventional Flattened Dynamics



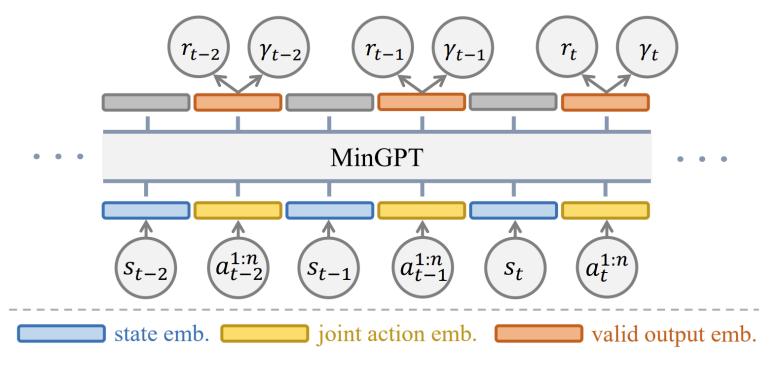
$$|\mathcal{S}| \times |\mathcal{A}|^n \times |\mathcal{S}| \to |\mathcal{S}|$$



$$|\mathcal{S}| \times |\mathcal{A}| \times |\mathcal{S}| \to |\mathcal{S}|$$

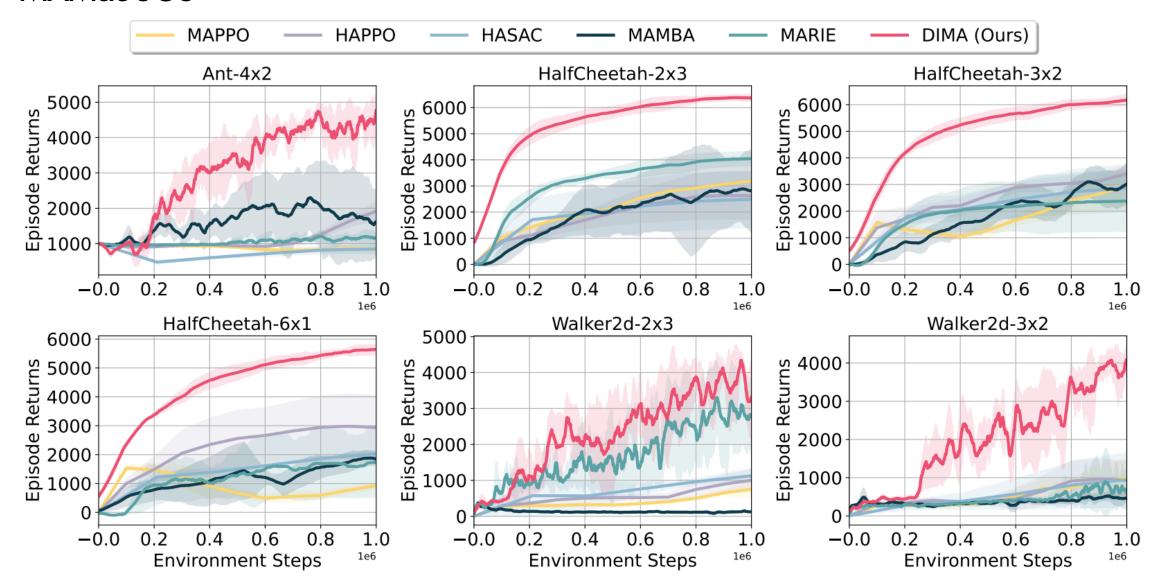
Learning in Imaginations

- For policy learning, DIMA integrates with a learning-in-imagination paradigm using:
 - A Transformer-based reward and termination model
 - A VQ-VAE state decoder for converting global states to local observations
 - MAPPO for policy optimization using Centralized Training with Decentralized Execution (CTDE)



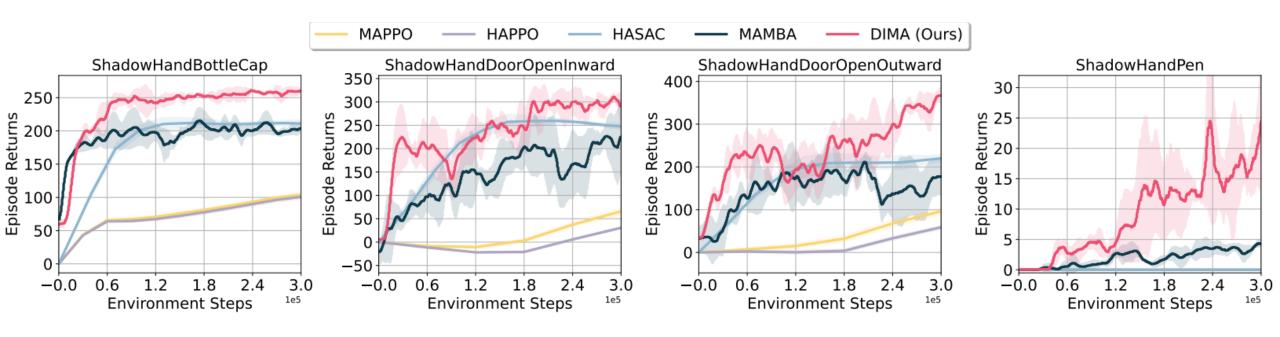
Experiment

MAMuJoCo



Experiment

• Bi-DexHands

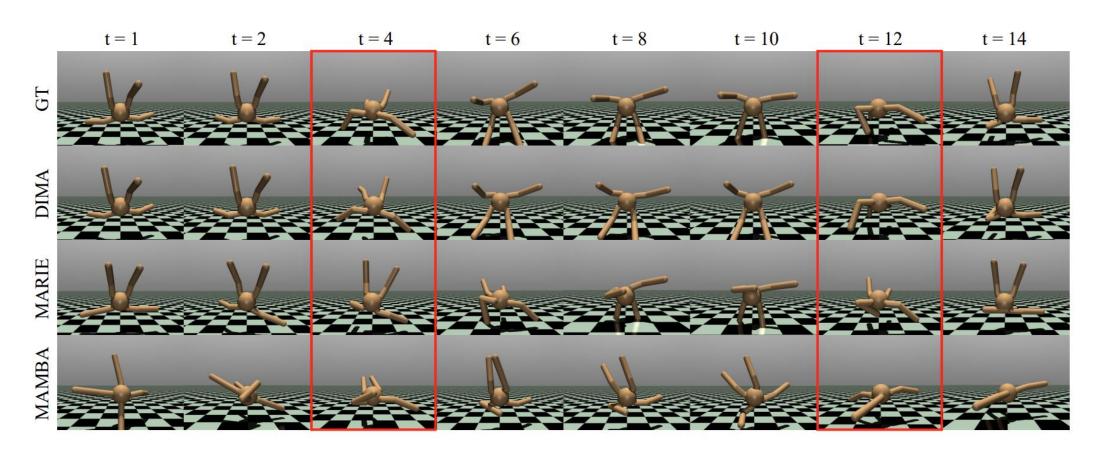


Experiment

Tasks	Steps	Methods					
		DIMA (Ours)	MARIE	MAMBA	HASAC	HAPPO	MAPPO
MAMuJoCo							
Ant-2x4		$4881_{\pm 756}$	$4471_{\pm 553}$	$1314_{\pm 756}$	$1344_{\pm 282}$	$1716_{\pm 449}$	$859_{\pm 47}$
Ant-4x2		${f 4766}_{\pm 450}$	$1173_{\pm 136}$	$1618_{\pm 931}$	$850_{\pm 126}$	$1917_{\pm 253}$	$854_{\pm 41}$
HalfCheetah-2x3	1M	$6370_{\pm 121}$	$4045_{\pm 275}$	$2813_{\pm 1580}$	$2499_{\pm 1081}$	$2628_{\pm 893}$	$3196_{\pm 75}$
HalfCheetah-3x2		$6175_{\pm 212}$	$2380_{\pm 1145}$	$3029_{\pm 798}$	$2872_{\pm 890}$	$3402_{\pm 317}$	$2936_{\pm 766}$
HalfCheetah-6x1		$5643_{\pm 163}$	$1738_{\pm 1213}$	$1848_{\pm 220}$	$2044_{\pm 110}$	$2939_{\pm 1113}$	$925_{\pm 121}$
Walker2d-2x3		$3329_{\pm 1056}$	$2822_{\pm 997}$	$124_{\pm 19}$	$1135_{\pm 210}$	$1007_{\pm 282}$	$752_{\pm 216}$
Walker2d-3x2		$4084_{\pm 357}$	$604_{\pm 349}$	$466_{\pm 103}$	$958_{\pm 715}$	$932_{\pm 513}$	$1004_{\pm 480}$
Bi-DexHands							
BottleCap		$259.9_{\pm 4.1}$	-	$203.8_{\pm 5.2}$	$210.9_{\pm 6.1}$	$100.7_{\pm 3.8}$	$104.0_{\pm 2.3}$
DoorOpenInward	300K	$290.4_{\pm 29.0}$	-	$225.0_{\pm 79.4}$	$246.3_{\pm 7.0}$	$30.7_{\pm 2.5}$	$65.8_{\pm 6.9}$
DoorOpenOutward		$367.1_{\pm 19.4}$	-	$177.4_{\pm 43.1}$	$221.9_{\pm 7.3}$	$58.8_{\pm 4.6}$	$96.4_{\pm 8.5}$
BottleCap		$24.4_{\pm 11.4}$	-	$4.3_{\pm 0.4}$	$0.0_{\pm 0.0}$	$0.0_{\pm 0.0}$	$0.0_{\pm 0.0}$

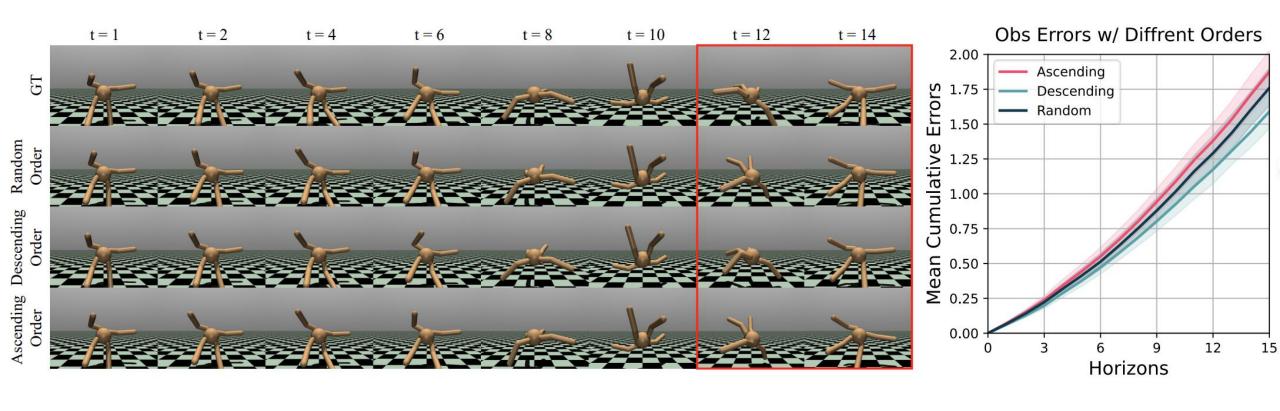
Qualitative Analysis

• DIMA demonstrates substantially more accurate and stable long-horizon predictions than existing multi-agent world models



Qualitative Analysis

• DIMA effectively preserves permutation invariance over a long horizon



Ablation Study

• Our proposed formulation improves sample efficiency in lower-data regimes

Table 2: Ablation study on **ShadowHandBottleCap** comparing sequential (DIMA) vs. joint modeling under varying data budgets (8 runs). Sequential modeling shows superior performance and lower variance in lower-data regimes.

Method	100K Steps	150K Steps	200K Steps	250K Steps	300K Steps
Joint	$234.1_{\pm 20.6}$	$238.6_{\pm 22.9}$	$246.7_{\pm 10.9}$	$243.7_{\pm 18.2}$	$255.2_{\pm 7.0}$
Sequential (Ours)	$251.8_{\pm 17.3}$	$248.2_{\pm 11.6}$	$246.3_{\pm 14.6}$	$251.9_{\pm 12.7}$	$249.2_{\pm 10.7}$

Table 3: Ablation study on complex Bi-DexHands tasks at 300k steps (8 runs). The advantage of sequential modeling persists in more challenging environments.

Method	DoorOpenOutward @ 3	BOOK steps DoorOpenInward @ 300K steps
Joint	$302.5_{\pm 76.9}$	$235.1_{\pm 68.1}$
Sequential (Ours)	$352.4_{\pm 40.5}$	$290.3_{\pm 30.4}$

Ablation Study

Sequential Modeling Retains Full Predictive Accuracy with Reduced Complexity

Table 8: Ablation study comparing the **cumulative L1 observation errors** of sequential vs. joint modeling. Models were trained on 500k transitions and evaluated on a 500k held-out set. Sequential modeling achieves statistically indistinguishable prediction accuracy, validating its design.

Task	Method	Obs L1 Error @ $H = 15$	Obs L1 Error @ $H=20$	
DoorOpenOutward	Sequential (Ours) Joint	$\begin{array}{c} {\bf 5.333}_{\pm 0.273} \\ {\bf 5.345}_{\pm 0.267} \end{array}$	$7.081_{\pm 0.325} \\ 7.092_{\pm 0.324}$	
DoorOpenInward	Sequential (Ours) Joint	$egin{array}{c} {\bf 5.563}_{\pm 0.326} \ {\bf 5.565}_{\pm 0.322} \ \end{array}$	$7.447_{\pm 0.393} \\ 7.453_{\pm 0.386}$	
Pen	Sequential (Ours) Joint	$\begin{array}{c} \textbf{6.667}_{\pm 1.764} \\ 6.676_{\pm 1.762} \end{array}$	$8.936_{\pm 2.328} \\ 8.947_{\pm 2.322}$	

Contact

扫一扫上面的二维码图案,加我为朋友。

Thanks for listening