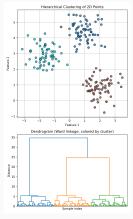
Bridging Arbitrary and Tree Metrics via Differentiable Gromov Hyperbolicity

Pierre Houedry¹ Nicolas Courty¹ Florestan Martin-Baillon² Laetitia Chapel¹ Titouan Vayer³ October 27, 2025

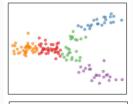
¹IRISA, UMR 6074, CNRS, Université de Bretagne Sud ²IRMAR, UMR 6625, CNRS, Université de Rennes ³LIP, UMR 5668, CNRS, Univ. Lyon, ENS de Lyon, UCBL, CNRS, Inria

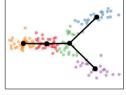
Introduction

Motivation

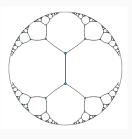


Hierarchical Clustering



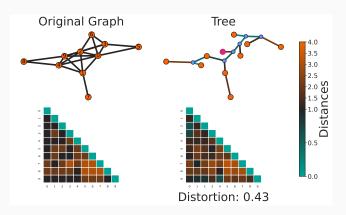


Single-cell trajectory inference (Street et al., 2018)



Tree Embedding (Nickel and Kiela, 2017)

Problem



A graph and a possible embedding of this graph into a tree.

Problem

Problem Statement

- Given: A finite metric space (X, d_X) (e.g. pairwise distances between n items)
- Find:
 - 1. A weighted tree T with vertex set V(T)
 - 2. An embedding $\Phi: X \hookrightarrow V(T)$
- Objective: Minimize the ℓ_{∞} norm

$$\max_{x,y\in X}|d_X(x,y)-d_T(\Phi(x),\Phi(y))|,$$

3

Background on δ -hyperbolicity

Geometric intuition

Triangles

Geometry Curvature

 δ -Hyperbolicity

Euclidean K = 0

$$\delta = \infty$$

Hyperbolic

$$\delta > 0$$

Tree

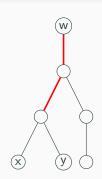
$$K = -\infty$$
$$\delta = 0$$

Formal definition

Gromov Product (Gromov, 1987)

Let (X, d_X) be a metric space and let $x, y, w \in X$. The *Gromov* product of x and y with respect to the basepoint w is defined as

$$(x|y)_w = \frac{1}{2} (d_X(x,w) + d_X(y,w) - d_X(x,y)).$$



Formal definition

δ-hyperbolicity and Gromov hyperbolicity (Gromov, 1987)

A metric space (X, d_X) is said to be δ -hyperbolic if there exists $\delta \geq 0$ such that for all $x, y, z, w \in X$, the Gromov product satisfies

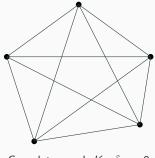
$$(x|z)_w \ge \min \{(x|y)_w, (y|z)_w\} - \delta.$$

The *Gromov hyperbolicity*, denoted by δ_X , is the smallest value of δ that satisfies the above property. Consequently, every finite metric space (X, d_X) has a Gromov hyperbolicity equal to

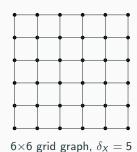
$$\delta_X = \max_{x,y,z,w \in X} \left(\min \left\{ (x|y)_w, (y|z)_w \right\} - (x|z)_w \right).$$

6

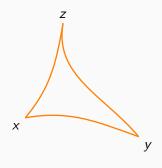
Some examples



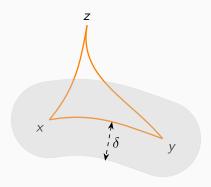
Complete graph K_5 , $\delta_X=0$



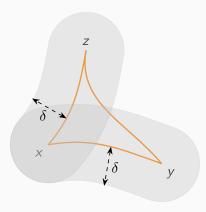
Two example graphs



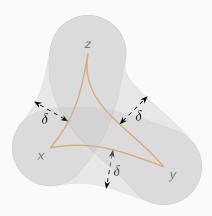
 $\delta\text{-thin}$ triangle



 δ -thin triangle



 δ -thin triangle



 $\delta\text{-thin}$ triangle

Gromov's Theorem (Ghys et al., 1990, Ch. 2, §2, Thm. 12)

Let (X, d_X) be a finite δ -hyperbolic metric space over n points. For every $w \in X$, there exists a finite metric tree (T, d_T) , and an embedding $\Phi_w : X \to T$ such that:

Gromov's Theorem (Ghys et al., 1990, Ch. 2, §2, Thm. 12)

Let (X, d_X) be a finite δ -hyperbolic metric space over n points. For every $w \in X$, there exists a finite metric tree (T, d_T) , and an embedding $\Phi_w : X \to T$ such that:

1. Distance to the basepoint is preserved:

$$d_{\mathcal{T}}(\Phi_w(x),\Phi_w(w))=d_X(x,w).$$

Gromov's Theorem (Ghys et al., 1990, Ch. 2, §2, Thm. 12) Let (X, d_X) be a finite δ -hyperbolic metric space over n points. For every $w \in X$, there exists a finite metric tree (T, d_T) , and an embedding $\Phi_w : X \to T$ such that:

1. Distance to the basepoint is preserved:

$$d_{\mathcal{T}}(\Phi_w(x),\Phi_w(w))=d_X(x,w).$$

2. For every pair of points $x, y \in X$, the tree-embedding Φ_w does not stretch distances and only contracts them by at most an additive factor of $2\delta \log_2(n-2)$.

$$d_X(x,y) - 2\delta \log_2(n-2) \le d_T(\Phi_w(x), \Phi_w(y)) \le d_X(x,y).$$

Gromov's Theorem (Ghys et al., 1990, Ch. 2, §2, Thm. 12) Let (X, d_X) be a finite δ -hyperbolic metric space over n points.

For every $w \in X$, there exists a finite metric tree (T, d_T) , and an embedding $\Phi_w : X \to T$ such that:

1. Distance to the basepoint is preserved:

$$d_T(\Phi_w(x),\Phi_w(w))=d_X(x,w).$$

2. For every pair of points $x, y \in X$, the tree-embedding Φ_w does not stretch distances and only contracts them by at most an additive factor of $2\delta \log_2(n-2)$.

$$d_X(x,y) - 2\delta \log_2(n-2) \le d_T(\Phi_w(x), \Phi_w(y)) \le d_X(x,y).$$

X can be embedded into a tree iff $\delta_X = 0$!!

Example

Computational Bottlenecks

- Gromov hyperbolicity requires checking all point quadruples \Rightarrow naive cost is $O(n^4)$.
- (Fournier et al., 2015) reduce base-point hyperbolicity to a (max, min) matrix product \Rightarrow Overall hyperbolicity in $O(n^{3.69})$

Structural Pruning via Far-apart Pairs

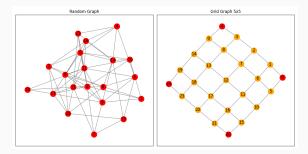


Illustration of far-apart pairs pruning

- Use far-apart vertex pairs to witness values.
- Prune by exploring only key quadruples.
- Delivers major speedups (Cohen et al., 2015; Coudert et al., 2022).

Restatement of the problem

Problem Statement

- Given: A finite metric space (X, d_X) (e.g. pairwise distances between n items)
- Find:
 - 1. A weighted tree T with vertex set V(T)
 - 2. An embedding $\Phi: X \hookrightarrow V(T)$
- Objective: Minimize the ℓ_{∞} norm

$$\max_{x,y\in X}|d_X(x,y)-d_T(\Phi(x),\Phi(y))|,$$

Existing Methods Comparison

Method	HCC ¹	Gromov ²	TR ³	NJ^4	LT ⁵
Complexity	$O(n^2 \log n)$	$O(n^2)$	$O(n^2)$	$O(n^3)$	O(E)
Differentiable	×	X	X	×	X
Requires a root	✓	✓	X	X	✓
Deterministic	✓	✓	X	✓	✓
Non graph metrics	✓	✓	✓	✓	X

Comparison of existing methods.

¹(Yim and Gilbert, 2023)

²(Gromov, 1987)

³(Sonthalia and Gilbert, 2020)

⁴(Saitou and Nei, 1987)

⁵(Chepoi et al., 2012)

Our Approach: Differentiable Hyperbolicity

- We introduce a smooth, differentiable surrogate of hyperbolicity.
- Enables gradient-based optimization.
- We propose a **batched approximation scheme**:
 - Scalable computation
 - Independent of graph size

DeltaZero

Our approach

The set of *n*-points metrics:

$$\mathcal{D}_n := \left\{ \boldsymbol{D} \in \mathbb{R}_+^{n \times n} : \boldsymbol{D} = \boldsymbol{D}^\top, \ D_{ii} = 0, \ D_{ij} \leq D_{ik} + D_{kj} \right\}$$

is a closed, convex, polyhedral cone. Each metric d_X is represented by $\mathbf{D}_X \in \mathcal{D}_n$.

Objective: Find a metric $\mathbf{D}_{X'}$ that is:

- Close to \mathbf{D}_X (via ℓ_{∞} distortion),
- Does not stretch \mathbf{D}_X ,
- Tree-like (via low hyperbolicity $\delta_{X'}$).

Our approach

The set of *n*-points metrics:

$$\mathcal{D}_n := \left\{ \boldsymbol{D} \in \mathbb{R}_+^{n \times n} : \boldsymbol{D} = \boldsymbol{D}^\top, \ D_{ii} = 0, \ D_{ij} \leq D_{ik} + D_{kj} \right\}$$

is a closed, convex, polyhedral cone. Each metric d_X is represented by $\mathbf{D}_X \in \mathcal{D}_n$.

Objective: Find a metric $D_{X'}$ that is:

- Close to D_X (via ℓ_{∞} distortion),
- Does not stretch \mathbf{D}_X ,
- **Tree-like** (via low hyperbolicity $\delta_{X'}$).

Lagrangian type problem

$$\min_{\substack{\mathbf{D}_{X'} \in \mathcal{D}_n \\ \mathbf{D}_{X'} \leq \mathbf{D}_X}} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

Minimizer + Gromov Embedding

$$\begin{aligned} \mathbf{D}_{X^*} &= \underset{\mathbf{D}_{X'} \in \mathcal{D}_n}{\mathsf{arg \, min}} \ \mathcal{L}_X(\mathbf{D}_{X'}, \mu), \\ \mathbf{D}_{X'} &\leq \mathbf{D}_X \\ (\mathcal{T}^*, d_{\mathcal{T}^*}) &= \Phi_w(\mathbf{D}_X^*). \end{aligned}$$

$$d_{T^*}(\Phi_w(x),\Phi_w(y)) \leq d_X(x,y)$$

$$d_X(x,y) - C_{\mu} \le d_{T^*}(\Phi_w(x),\Phi_w(y))$$

Gromov Embedding

$$(T, d_T) = \Phi_w(\mathbf{D}_X)$$

does not stretch distances only contracts them by at most $2\delta \log_2(n-2)$

In particular if $\mu \geq \frac{1}{2\log_2(n-2)}$ then we have $C_{\mu} < 2\delta \log_2(n-2)$.

$$\text{Objective: } \min_{\substack{\mathbf{D}_{X'} \in \mathcal{D}_n \\ \mathbf{D}_{X'} \leq \mathbf{D}_X}} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

Objective:
$$\min_{\substack{\mathbf{D}_{\chi'} \in \mathcal{D}_n \\ \mathbf{D}_{\chi'} \leq \mathbf{D}_{\chi}}} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

Non-differentiable

$$\|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} \longrightarrow \|\mathbf{D}_X - \mathbf{D}_{X'}\|_2^2$$

$$\rightsquigarrow$$

$$\|\mathbf{D}_{X} - \mathbf{D}_{X'}\|_{2}^{2}$$

Objective:
$$\min_{\substack{\mathbf{D}_{X'} \in \mathcal{D}_n \\ \mathbf{D}_{X'} \leq \mathbf{D}_X}} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

Non-differentiable

$$\begin{split} \| \mathbf{D}_X - \mathbf{D}_{X'} \|_{\infty} & & \leadsto & \| \mathbf{D}_X - \mathbf{D}_{X'} \|_2^2 \\ \mathbf{D}_{X'} & \leq \mathbf{D}_X & & \leadsto & \mathbf{X} \end{split}$$

Objective:
$$\min_{\mathbf{D}_{X'} \in \mathcal{D}_n} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

Non-differentiable

$$\|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} \longrightarrow \|\mathbf{D}_X - \mathbf{D}_{X'}\|_2^2$$

$$\rightsquigarrow$$

$$\|\mathbf{D}_{X}-\mathbf{D}_{X'}\|_{2}^{2}$$

Objective:
$$\min_{\mathbf{D}_{X'} \in \mathcal{D}_n} \mathcal{L}_X(\mathbf{D}_{X'}, \mu) := \mu \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} + \delta_{X'}.$$

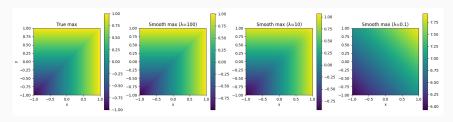
Non-differentiable

$$\begin{split} \|\mathbf{D}_X - \mathbf{D}_{X'}\|_{\infty} & & \leadsto & \|\mathbf{D}_X - \mathbf{D}_{X'}\|_2^2 \\ \delta_{X'} & & \leadsto & ? \end{split}$$

Smooth min-max

We introduce a differentiable surrogate using log-sum-exp:

$$LSE_{\lambda}(\mathbf{x}) = \frac{1}{\lambda} \log \left(\sum_{i} e^{\lambda x_{i}} \right)$$



Smooth max visualization

Smooth Hyperbolicity

True
$$\delta_{\mathbf{X}}$$
 max (min $\{(x|y)_w, (y|z)_w\} - (x|z)_w\}$
Smooth $\delta_{\mathbf{X}}^{(\lambda)}$ LSE $_{\lambda}$ {LSE $_{-\lambda}((x|y)_w, (y|z)_w) - (x|z)_w\}$.

Smooth Hyperbolicity

$$\begin{array}{ll} \textbf{True} \ \delta_{\mathbf{X}} & \max \left(\min \left\{ (x|y)_w, (y|z)_w \right\} - (x|z)_w \right) \\ \textbf{Smooth} \ \delta_{\mathbf{X}}^{(\lambda)} & \mathrm{LSE}_{\lambda} \left\{ \mathrm{LSE}_{-\lambda} ((x|y)_w, (y|z)_w) - (x|z)_w \right\}. \end{array}$$

Bounds

$$\delta_X - \frac{\log 2}{\lambda} \le \delta_X^{(\lambda)} \le \delta_X + \frac{4 \log n}{\lambda}.$$

 $\delta_X^{(\lambda)}$ still requires $O(n^4)$ operations!

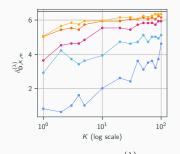
Batched Approximation for Scalability

- We sample K subsets $X_m^1, \ldots, X_m^K \subset X$, each of size m.
- Compute local estimates $\delta_{X_{in}}^{(\lambda)}$ and aggregate:

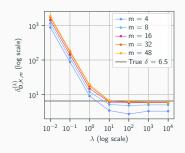
$$\delta_{X,K,m}^{(\lambda)} = LSE_{\lambda} \left(\delta_{X_{m}^{1}}^{(\lambda)}, \dots, \delta_{X_{m}^{K}}^{(\lambda)} \right)$$

- Reduces complexity to $O(K \cdot m^4)$.
- Caveat: Rare, high-curvature configurations may be missed in random batches ⇒ potential underestimation.

In practice



Evolution of the mean $\delta_{D,K,m}^{(\lambda)}$ as a function of the number of batches K, with $\lambda=1000$.



Estimation of $\delta_{D,K,m}^{(\lambda)}$ as a function of λ , with K=50.

Mean of $\delta_{D,K,m}^{(\lambda)}$ over 5 runs, computed on the $\mathrm{CS}\text{-PhD}$ dataset for different batch sizes m.

Final objective

Final Algorithm

DeltaZero

Require: A metric space (X, d_X) , root $w \in X$, learning rate ϵ , batches K, size m, scale λ , regularization μ , steps T

- 1: Initialize $\mathbf{D}_0 = \mathbf{D}_X$
- 2: **for** t = 0 to T 1 **do**
- 3: Sample K batches of m points
- 4: Compute $\delta_{\mathbf{D}_t,K,m}^{(\lambda)}$
- 5: $\boldsymbol{G}_t = \nabla L_X(\boldsymbol{D}_t)$
- 6: $\tilde{\boldsymbol{D}}_{t+1} = \text{AdamStep}(\boldsymbol{D}_t, \boldsymbol{G}_t, \epsilon)$
- 7: $D_{t+1} = \text{FloydWarshall}(\tilde{D}_{t+1}) \Rightarrow O(n^3)$
- 8: end for
- 9: **return** GromovEmbed(D_T , w)

Total cost of
$$O\left(T(Km^4 + n^3)\right)$$

Experiments: Setup

Setup: 100 random roots for pivot-based methods, mean and std. of distortion reported. DeltaZero hyperparameters selected via grid search:

- $\epsilon \in \{0.1, 0.01, 0.001\}$,
- $\mu \in \{0.1, 0.01, 1.0\}$,
- $\lambda \in \{0.01, 0.1, 1.0, 10.0\}$,
- $K \in \{100, 500, 1000, 3000, 5000\}$,
- T = 1000,
- m = 32.

Experiments: Unweighted Graphs

Table 1: ℓ_{∞} error on unweighted graphs (lower is better). Best result in bold, second-best underlined.

Dataset n Diameter	C-ELEGAN 452 7	CS PhD 1025 28	CORA 2485 19	AIRPORT 3158 12	WIKI 2357 9
NJ	2.97	16.81	13.42	4.18	6.32
TR	5.90 ± 0.72	21.01 ± 3.34	16.86 ± 2.11	10.00 ± 1.02	9.97 ± 0.93
HCC	4.31 ± 0.46	23.35 ± 2.07	12.28 ± 0.96	7.71 ± 0.72	7.20 ± 0.60
LT	5.07 ± 0.25	25.48 ± 0.60	7.76 ± 0.54	2.97 ± 0.26	4.08 ± 0.27
Gromov	3.33 ± 0.45	$\underline{13.28}\pm0.61$	9.34 ± 0.53	4.08 ± 0.27	5.54 ± 0.49
DeltaZero	1.87 ± 0.08	$\textbf{10.31}\pm0.62$	$\textbf{7.59}\pm0.38$	$\textbf{2.79}\pm0.15$	$\textbf{3.56}\pm0.20$
Improvement (%)	43.8%	22.3%	2.3%	6.0%	12.7%

Experiments: General Metrics

Table 2: ℓ_{∞} error on general metrics (lower is better). Best result in bold, second-best underlined.

Dataset	ZEISEL	IBD
n	3005	396
Diameter	0.87	0.99
NJ	0.51	0.90
TR	0.66 ± 0.10	1.60 ± 0.22
HCC	0.53 ± 0.07	1.25 ± 0.11
LT	_	_
Gromov	0.43 ± 0.02	1.01 ± 0.04
DeltaZero	0.24 ± 0.00	0.70 ± 0.03
Improvement (%)	44.1%	22.2%

Toy Application: Hierarchical Clustering

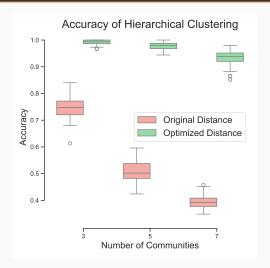
Setup:

- Stochastic Block Model with N = 3, 5, 7 communities, 50 nodes each
- $p_{in} = 0.6$, $p_{out} = 0.2$

Procedure:

- 1. Compute shortest-path distances and optimize them using DeltaZero ($\mu=1$, $\lambda=100$).
- 2. Apply Ward's linkage on both original and optimized distance matrices.

Toy Application: Hierarchical Clustering



Accuracy of hierarchical clustering with varying number of communities (3, 5, 7). Each setting is repeated 30 times.

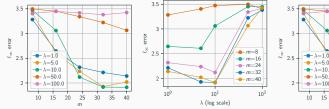
Future work

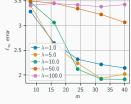
- Further theoretical investigations to:
 - Reduce the computational cost of $\delta_{D,K,m}^{(\lambda)}$.
 - Reduce the number of hyperparameters.
- Explore applications, such as:
 - Hierarchical clustering on real-world datasets,
 - Phylogenetic tree reconstruction,
 - Single-cell trajectory inference,
 - Hyperbolicity-aware learning?

Thanks for listening!

Any questions?

Sensitivity Analysis





Effect of the distance regularization coefficient μ on ℓ_∞ distortion.

Impact of the log-sum-exp scale λ on ℓ_{∞} error across various batch sizes m.

Impact of the batch size m on ℓ_{∞} error for multiple λ values

Sensitivity analysis of optimization hyperparameters on the $\operatorname{C-ELEGAN}$ dataset. In each plot, non-varied hyperparameters are set to their optimal values from a prior grid search. Results are averaged over 5 runs, and distortion values averaged over 100 root samples per run.

References

References

- Chepoi, V., Dragan, F. F., Estellon, B., Habib, M., Vaxès, Y., and Xiang, Y. (2012). Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs. *Algorithmica*, 62(3-4):713–732.
- Cohen, N., Coudert, D., and Lancin, A. (2015). On computing the gromov hyperbolicity. *ACM J. Exp. Algorithmics*, 20.
- Coudert, D., Nusser, A., and Viennot, L. (2022). Enumeration of far-apart pairs by decreasing distance for faster hyperbolicity computation. *ACM J. Exp. Algorithmics*, 27.
- Fournier, H., Ismail, A., and Vigneron, A. (2015). Computing the Gromov hyperbolicity of a discrete metric space. *Information Processing Letters*, 115(6):576–579.
- Ghys F De La Harne P Oesterlé L and Weinstein A (1990)