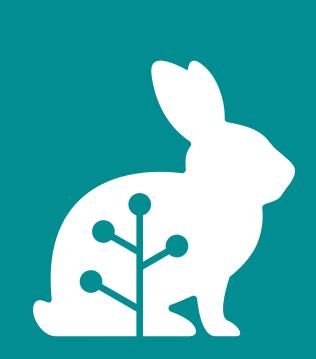


Learning Gradient Boosted Decision Trees with Algorithmic Recourse



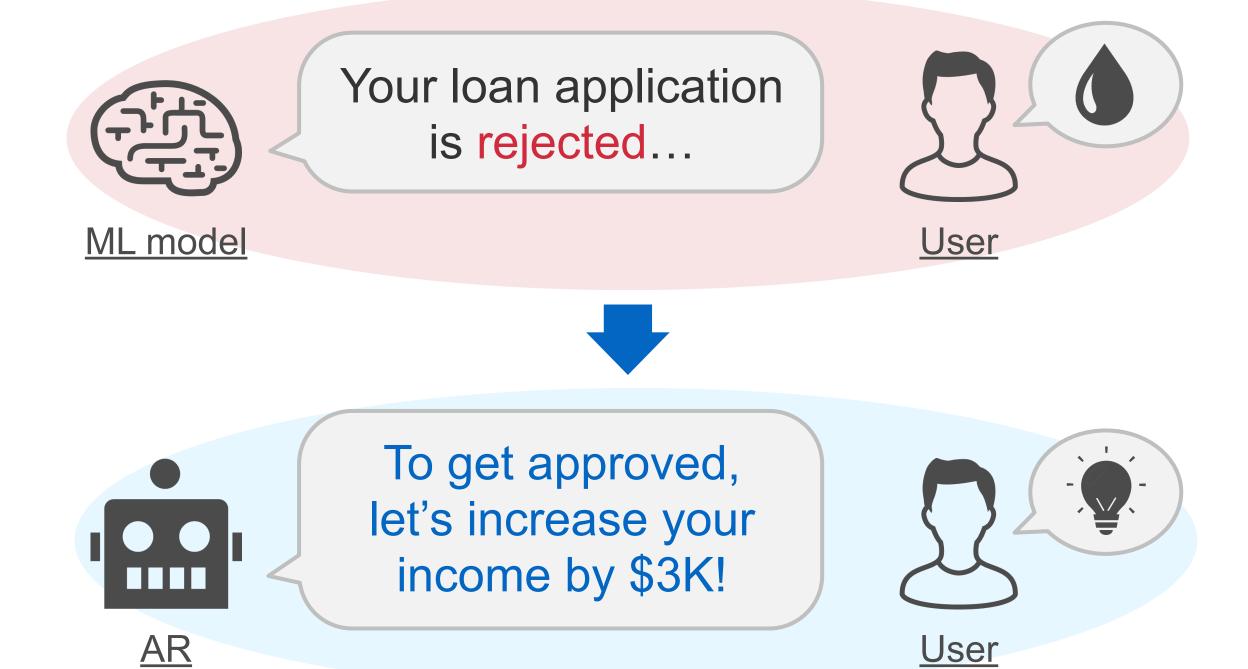
Kentaro Kanamori¹, Ken Kobayashi², Takuya Takagi¹

Background

Algorithmic recourse aims to provide "actions" for altering unfavorable predictions

Algorithmic Recourse [Ustun+ 19]

Explaining a "recourse action" for obtaining a desirable prediction result from an ML model



Algorithmic Recourse (AR) [Ustun+ 19]

Given a learned model $f: \mathcal{X} \to \mathcal{Y}$, an input instance $x \in \mathcal{X}$, and a desirable class $y^* \in \mathcal{Y}$, find an action a^* such that

$$a^* = \arg\min_{a \in \mathcal{A}(x)} c(a \mid x) \text{ s.t. } f(x + a) = y^*$$

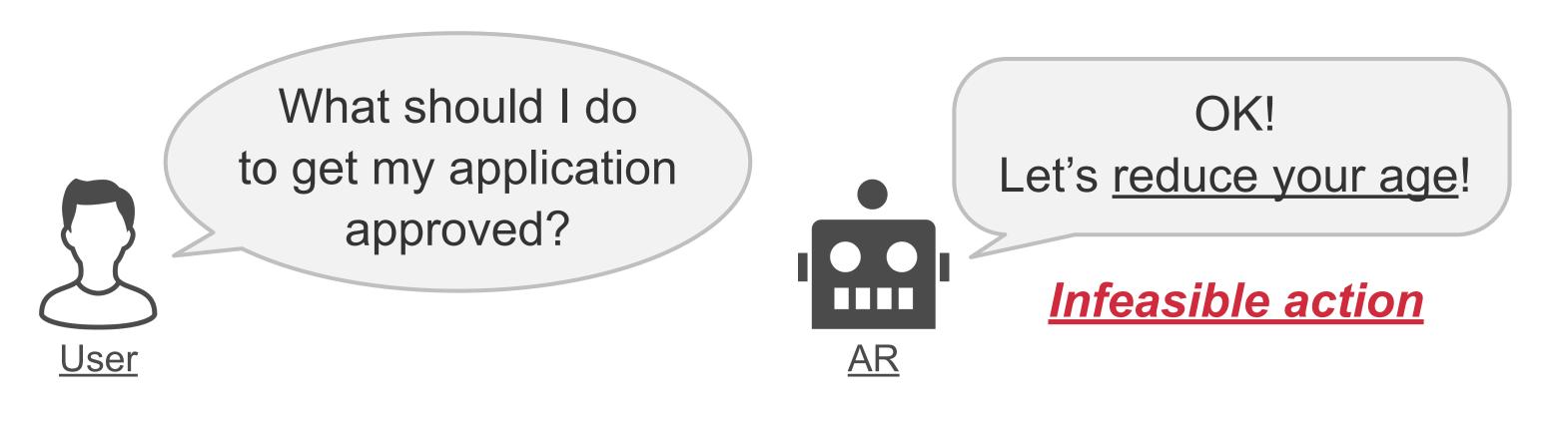
where $\mathcal{A}(x)$ is a set of feasible actions and c is a cost function.

- ► Provide a recourse action *a* that
 - (1) is feasible with a low-cost (executable);
 - (2) alters the current prediction result (*valid*)

Motivation

There is no guarantee that executable valid actions always exist for a learned model

Most of existing studies focus on post-hoc methods for a given learned model, however...



Income

There is no executable and valid action for this model...

Our Goal

Learn a model that guarantees the existence of executable and valid actions with high probability

Problem Formulation

Learning an accurate model while ensuring the existence of executable valid actions

Learning with Algorithmic Recourse [Ross+ 21; Kanamori+ 24]

Given a sample $S = \{(x_n, y_n)\}_{n=1}^N$, model class \mathcal{F} , and $\gamma \geq 0$, we consider the following learning problem:

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} l(y_n, f(x_n)) + \gamma \cdot l_{\beta}(x_n \mid f)$$
 Evaluate whether at least one executable and valid action exists

where $l_{\beta}(x \mid f) := \min_{a \in \mathcal{A}_{\beta}(x)} l(y^*, f(x + a))$ is the *recourse loss*, $\beta \ge 0$ is a cost budget parameter, and $\mathcal{A}_{\beta}(x) := \{ a \in \mathcal{A}(x) \mid c(a \mid x) \leq \beta \}$ is the set of feasible actions whose costs are less than β .

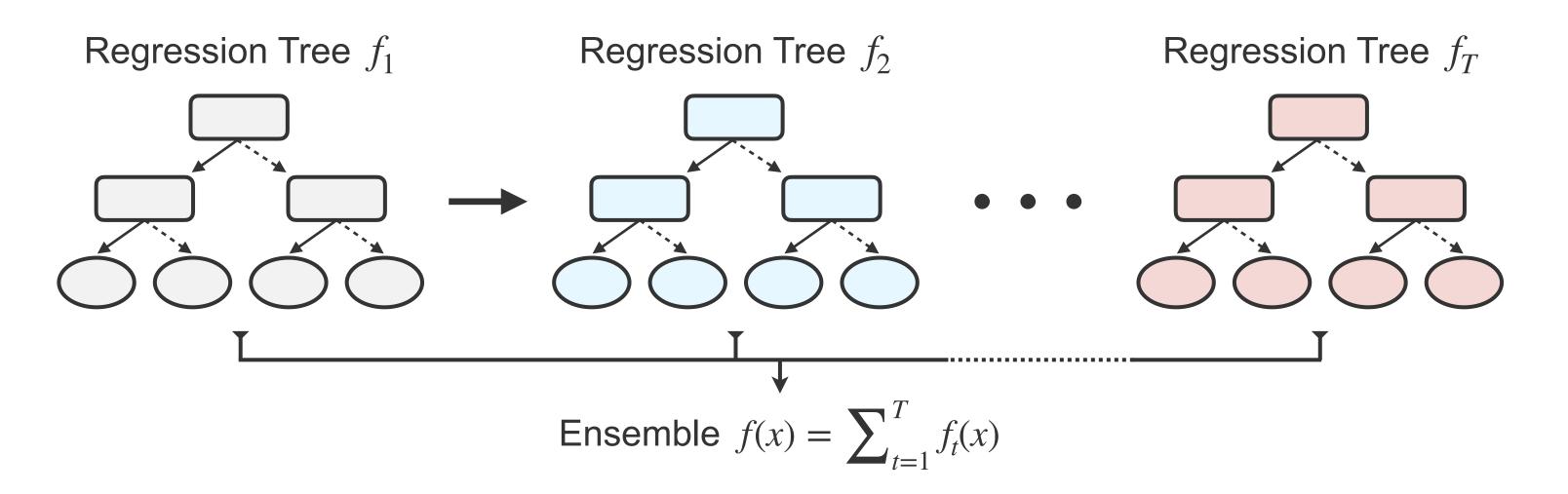
We aim to learn a model that can guarantee the existence of executable valid actions for as many instances as possible without degrading its accuracy and efficiency

Our Approach: Overview

Learning a tree ensemble model by gradient boosting with the recourse loss

This paper focusses on gradient boosted decision trees (GBDTs) [Friedman 00; Chen+ 16; Ke+ 17]

: GBDTs are the state-of-the-art models for tabular datasets (e.g., finance & justice) [Grinsztajn+ 22]



Our Framework

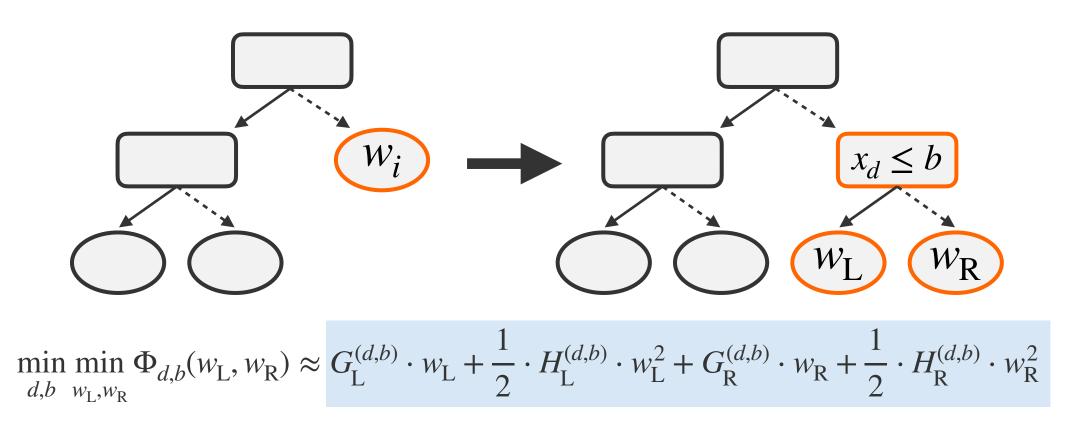
Learning each tree by gradient boosting with recourse loss and post-hoc refinement of leaf weights

Our Approach: Recourse-Aware Gradient Boosting

Deriving closed-form approximate solutions with the differentiable recourse loss

Standard Method (e.g., XGBoost)

Top-down greedy splitting & closed-form approximate solutions by <u>Taylor expansion of loss function</u>



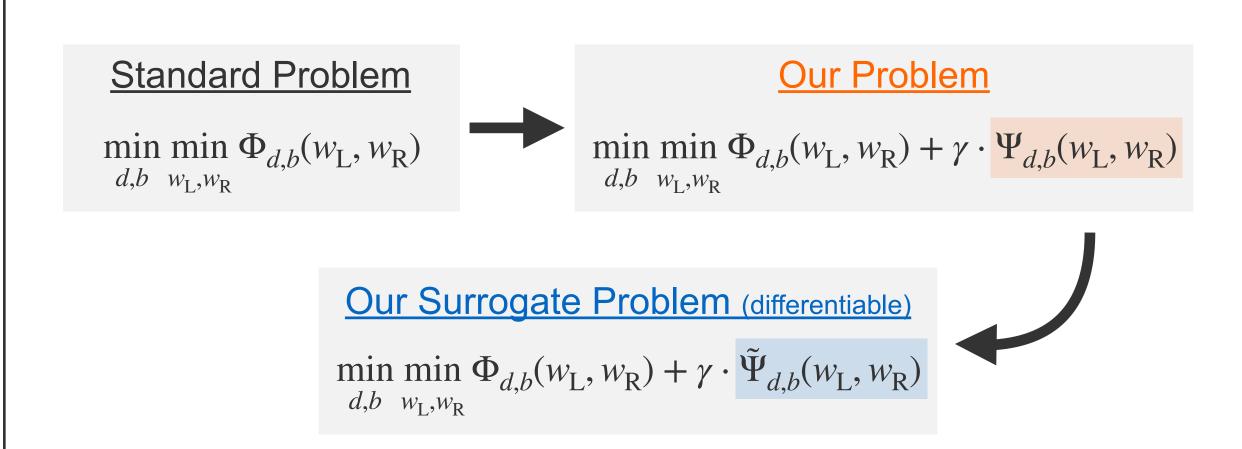
Able to obtain closed-form solutions for $w_{\rm L}$ and $w_{\rm R}$

Challenge

Closed-form solutions are not trivial for our case since the <u>recourse loss is not differentiable</u>

Our Idea

Deriving a <u>differentiable upper bound</u> of recourse loss



Proposition 2. (Time complexity)

Our algorithm approximately solves the above problem in $\mathcal{O}(N \cdot D)$

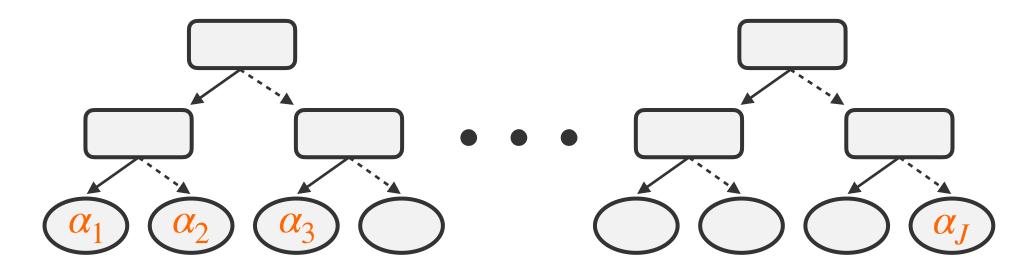
Achieve the same complexity as the standard one!

Our Approach: Recourse-Aware Leaf Refinement

Modifying leaf weights of a learned model to probably guarantee recourse actions

Our Idea

To control the existence ratio of recourse actions, refining leaf weights of a learned model



Optimizing leaf weights $\alpha = (\alpha_1, ..., \alpha_J)$ while fixing learned tree structures

Leaf Refinement Problem

$$\min_{\alpha \in \mathbb{R}^J} \frac{1}{N} \sum_{n=1}^N l(y_n, f_\alpha(x_n)) \text{ s.t. } \frac{1}{N} \sum_{n=1}^N l_\beta(x_n \mid f_\alpha) \le \varepsilon$$

Can be solved by repeated fitting of linear classifiers

Theoretical Analysis

Deriving a <u>PAC-style bound on the estimation error</u> of the recourse loss over a training sample

Proposition 3. (PAC-style analysis of refined models)

For a model f, let $\mathcal{R}_{\beta}(f) := \mathbb{P}_x[\, \forall a \in \mathcal{A}_{\beta}(x) : f(x+a) \neq y^*]$ be the expected recourse risk. Then, a refined model f_{α} satisfies the following inequality with probability at least $1-\delta$:

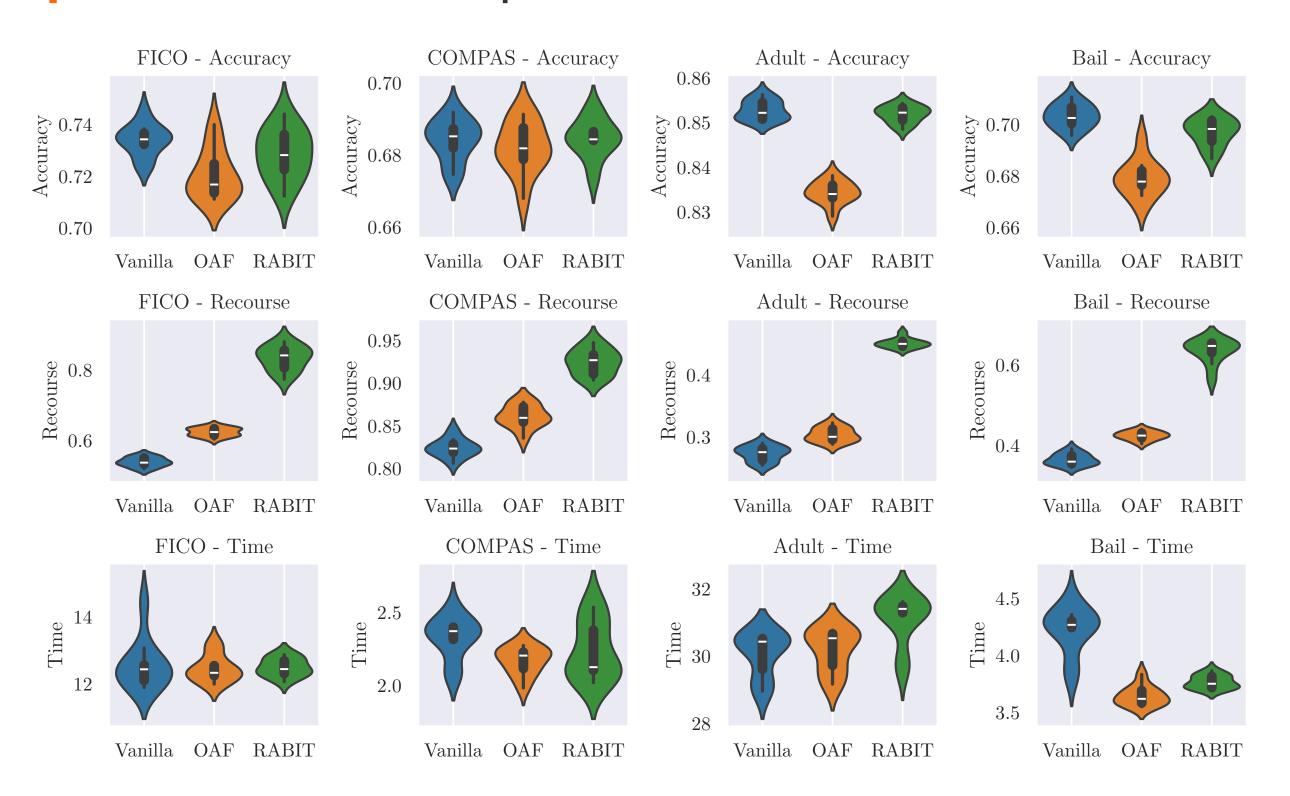
$$\mathcal{R}_{\beta}(f_{\alpha}) \leq \frac{1}{N} \sum_{n=1}^{N} l_{\beta}(x_n \mid f_{\alpha}) + \sqrt{\frac{8 \cdot \ln \frac{e \cdot N}{4}}{N}} + \sqrt{\frac{\ln \frac{1}{\delta}}{2 \cdot N}}$$

 We can also control the probability of the existence of executable valid actions for unseen instances

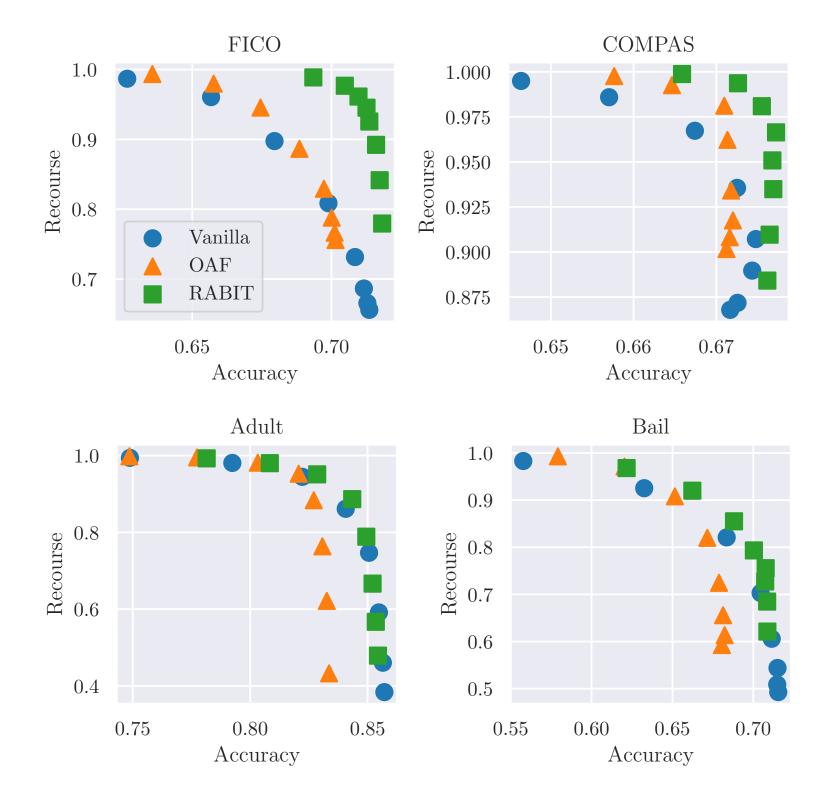
Experiments

Attained higher recourse ratio while maintaining comparable accuracy and efficiency

Exp. 1 Baseline Comparison (w/o leaf refinement)



Exp. 2 Efficacy of Leaf Refinement



Our method (RABIT) significantly improved recourse ratio without degrading accuracy and efficiency

Summary

Learning GBDTs that can provide accurate predictions and executable valid actions

We propose Recourse-Aware gradient Boosted decIsion Trees (RABIT):

- Propose a new gradient boosting algorithm with the recourse loss
 - Its time complexity is equivalent to the standard ones (e.g., XGBoost)
- Introduce a leaf refinement method under the recourse constraint
 - Provide a PAC-style guarantee of the recourse action existence
- Demonstrate the efficacy of our method by experiments
 - Improve the recourse guarantee while maintaining accuracy and efficiency

