Missing Data Imputation by Mutual Information Minimization

Song Liu (song.liu@bristol.ac.uk)

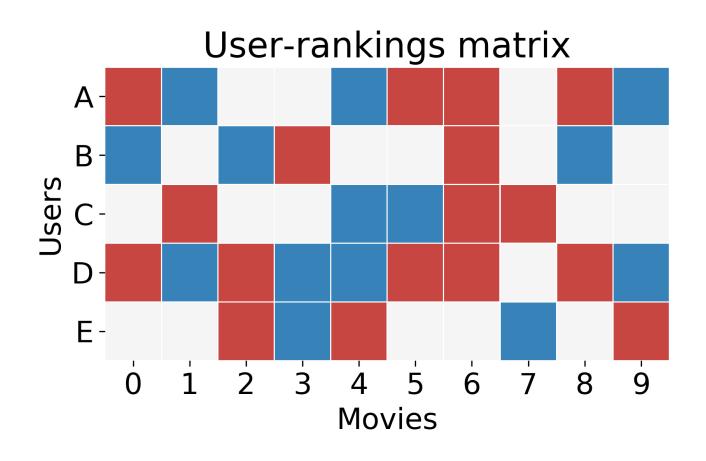
joint work with Jiahao Yu, Qizhen Ying, Leyang Wang, Ziyue Jiang

based on Section 5.3 of arXiv:2305.15577, ICML2024

and arXiv:2505.11749, NeurIPS2025

Problem: Missing Data (Intuition)

The Netflix Prize (https://en.wikipedia.org/wiki/Netflix_Prize)



Problem: Missing Data (Mathy)

We observe pairs of data and mask: $\mathcal{D} = \{(x,m)\}$,

$$x_j = egin{cases} x_j^*, & ext{if } m_j = 1 \ ext{NaN}, & ext{if } m_j = 0 \end{cases}.$$

- $ullet x^* \in \mathbb{R}^d$, true data. $m \in \{0,1\}^d$, missing pattern.
- Goal: Given \mathcal{D} , guess $\left\{x_j^*\middle| m_j=0\right\}$.

Types of Missingness

Is m dependent of x^* ?

- If $m \perp \perp x^*$, Missing Completely at Random (MCAR)
- If $m \perp \!\!\! \perp x_{1-m}^* | x_m^*$, Missing at Random (MAR)
- Otherwise, Missing not at Random (MNAR)

Example, Score = (Math, Physics)

- Exam scores are randomly deleted.
- Math scores are randomly deleted if Physics scores < 50.
- Math scores are randomly deleted if Math scores < 50.

Difficulty: MCAR < MAR < MNAR

How to Impute?

- One-shot (usually as a placeholder):
 - \circ Fill x_{1-m} with the mean/median the observed values.
 - Does not fully utilize information in the dataset.
- Round-robin (e.g., MICE, missForest, Hyperimpute):
 - i. Initialize the dataset with One-shot impute.
 - ii. For all j,
 - a. Fit a node-wise probability model $p(x_j|x_{-j})$.
 - b. Impute x_j with a sample from $p(x_j|x_{-j})$, if $m_j=0$.
- Others (OTimpute, MIRACLE, MIWAE)

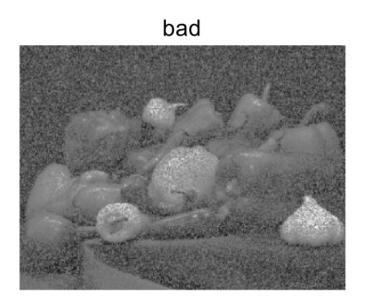
Impute without Model?

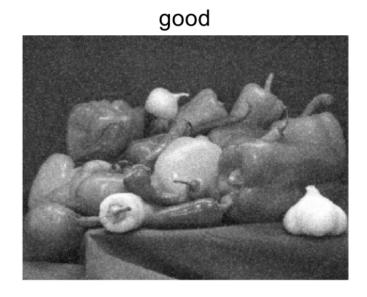
- Much earlier works rely on parametric or non-parametric model fitting.
- Can I impute missing data without fitting a probabilistic model?

Generative Al

- Imputation is naturally a generative modelling problem.
- impute = generate conditionally!

Generative Adversarial Impute Net (intuition) (Yoon et al., 2018)





• Good imputation \approx I cannot tell whether a pixel is imputed or not.

Generative Adversarial Impute Net (intuition)

- 1. Impute the dataset with **One-shot** impute.
- 2. **Train a classifier** to predict whether a feature is imputed or not given the current imputation.
- 3. **Imputer data** so that the classifier trained in step 2 cannot tell whether a feature is imputed or not.
- 4. Repeat 2 and 3.

Generative Adversarial Impute Net (mathy)

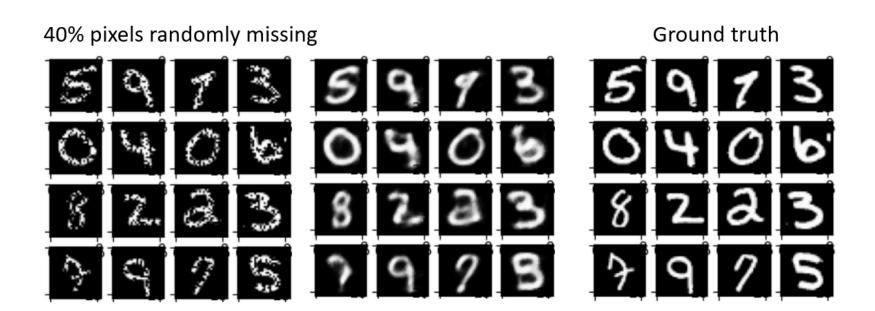
- 1. Given the initial imputation and mask (\hat{x}, m) .
- 2. For each feature j, train a binary classifier to predict missingness m_j with $\hat{m}_j:=f_j(\hat{x},m_{-j})\in [0,1]$ by $\min_{f_j} \mathrm{CrossEnt}(m_j,\hat{m}_j)$
- 3. Update \hat{x}_i , so the above loss is maximized across all j:

$$\max_{\hat{x}} \sum_{j} \operatorname{CrossEnt}(m_j, \hat{m}_j)$$

4. Repeat 2 and 3.

This approach is called GAIN (Yoon et al., 2018).

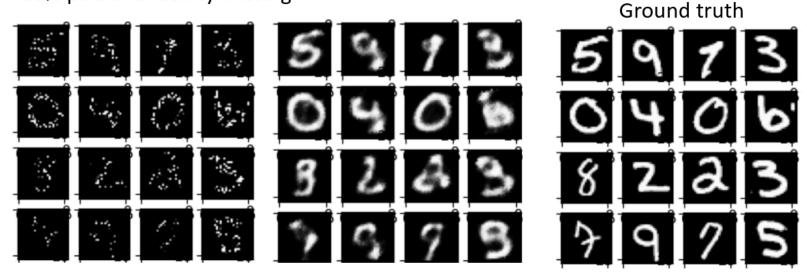
Performs well!



The blurriness is partly due to the CNN architecture.

Performs well!

80% pixels randomly missing



- Generative method works reasonably well on highdimensional data.
- Round-robin method usually struggle on high-dimensional data due to its dimension-wise structure.

Why does GAIN work?

- The classifier f is a probabilistic model of the missingness $p(m_j|\hat{x},m_{-j})$, minimizing a cross-entropy loss.
- The imputer maximizes the cross entropy loss:

$$egin{array}{l} \circ \; \max_{\hat{x}} \sum_{j} \mathbb{E}_{\hat{x},m} - \log p(m_{j} | \hat{x}, m_{-j}) \end{array}$$

- \circ Pseudo-likelihood approximation $\sum_{j} \log p(m_{j}|\hat{x},m_{-j}) pprox \log p(m|x).$
- Thus, the imputer approximately minimizes the mutual information between \hat{x} and m
 - $egin{aligned} \circ \ \min_{\hat{x}} \mathbb{E}_{\hat{x},m} \log p(m|\hat{x}) &pprox \min_{\hat{x}} \mathrm{MI}[\hat{x},m] \end{aligned}$

Why does GAIN work?

- GAIN imputes by breaking dependency between m and \hat{x} .
- If we can impute the missing values **perfectly**, i.e., $\hat{x} = x^*$, then $\hat{x} \perp \!\!\! \perp m$, by MCAR assumption.
- GAIN enforces a necessary condition of a perfect imputation.
 - Necessary, not sufficient, as missing data imputation is ill-defined problem.
 - GAIN has additional loss terms to ensure the imputation stays close to the true values.

Imputation by Minimizing MI

- GAIN only approximately minimizes the MI
 - Joint probability ≈ Pseudo-likelihood
- Can we minimize MI exactly?
- Minimizing of MI = minimizing of KL divergence.
 - ${f o} \ \operatorname{MI}[\hat{x},m] := \operatorname{KL}[p_{\hat{x},m}|p_mp_{\hat{x}}].$
- Problem: KL is intractable.
 - not without complicated approximation scheme.
 - e.g., maximizing Donsker and Varadhan lower bound.

Simple Iterative KL Minimization

Set initial imputation $\hat{x}^{(0)}$, t=1

Repeat

- $ullet \hat{x}^{(t)} = rg\min_{\hat{x}} \mathrm{KL}[p_{\hat{x},m}|p_m p_{\hat{x}^{(t-1)}}].$
- $t \leftarrow t + 1$

Does it Work?

Proposition:

 $ext{KL}[p_{\hat{x}^{(t-1)},m}|p_mp_{\hat{x}^{(t-1)}}] \geq ext{KL}[p_{\hat{x}^{(t)},m}|p_mp_{\hat{x}^{(t)}}]$, i.e., The mutual information between \hat{x} and m is non-increasing over iterations.

Proof by Gibbs inequality.

The Optimal Imputer

- At iteration t, what is the optimal imputer $\hat{x}^{(t)}$?
- ullet Recall $\hat{x}^{(t)} = rg \min_{\hat{x}} \operatorname{KL}[p_{\hat{x},m}|p_m p_{\hat{x}^{(t-1)}}].$

Proposition:

 $\hat{x}^{(t)}$ is the optimal imputer if and only if $p_{\hat{x}^{(t)}}(x_{1-m}|x_m,m)=p_{\hat{x}^{(t-1)}}(x_{1-m}|x_m).$

- The optimal imputer gradually removes the influence of m over iterations.
- Finding the optimal imputer is the same as matching two conditional distributions.

Constructing The Optimal Imputer

Intuition:

Construct an ODE that "transports" $\hat{x}^{(t-1)}$ to $\hat{x}^{(t)}$.

Mathy:

Formally speaking, the imputer $\hat{x}^{(t)}$ is the solution of an ODE

$$\mathrm{d}z(\tau) = v[z(\tau), \tau]\mathrm{d}\tau$$

at au=1 with the initial condition $z(0)=\hat{x}^{(t-1)}$.

Problem: How to set v?

• There exists many v[z(au), au] that transports $\hat{x}^{(t-1)}$ to $\hat{x}^{(t)}$.

Training a (conditional) Rectified Flow

• One v can be found by solving a least squares:

$$v^* = rg \min_v \int_{ au} \mathbb{E} \Big\| ilde{x}^{(t-1)} - \hat{x}^{(t-1)} - v_ au \left[x_{1-m}(au), \hat{x}_m^{(t-1)}, \hat{x}_m^{(t)}
ight] \Big\|^2$$

- where $x(\tau)= au ilde x^{(t)}+(1- au)\hat x^{(t-1)}$ and ilde x is an independent copy of $\hat x$.
- The above objective is a special type of Rectified Flow (RF).
 - \circ RF learns an ODE that transport samples between two distributions p_{x_0} and p_{x_1} by following the interpolation path $x(au)= au x_1+(1- au)x_0$.

Training a (conditional) Rectified Flow

 v^* is indeed optimal:

Theorem

The above ODE characterized by the velocity field v^* , with initial condition $z(0)=\hat{x}^{(t-1)}$, has a solution $z(1)=\hat{x}^{(t)}$ at $\tau=1$. i.e., v^* indeed transport $\hat{x}^{(t-1)}$ to $\hat{x}^{(t)}$.

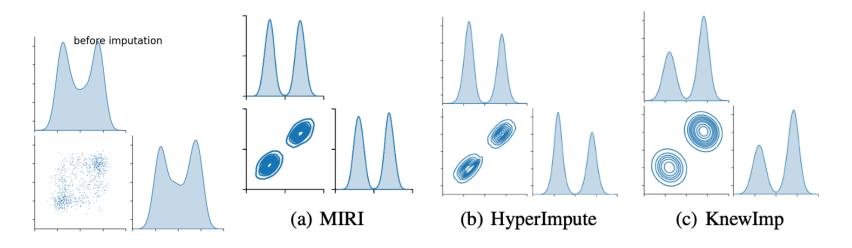
Algorithm: Mutual Information Reducing Iterations (MIRI)

Set initial imputation $\hat{x}^{(0)}$, t=1Repeat

- Obtain $ilde{x}^{(t-1)}$ by shuffling $\hat{x}^{(t)}$.
- Train v^* using LS with $(\hat{x}^{(t-1)}, m)$ and $\tilde{x}^{(t-1)}$.
- $\hat{x}^{(t)} = \text{ODESolve}(\text{init} = \hat{x}^{(t-1)}, \text{velocity} = v, \tau = 1).$
- $t \leftarrow t + 1$

Toy Data

Recovering a bimodal Gaussian mixture with 30% missing data, using 6000 samples to train v.

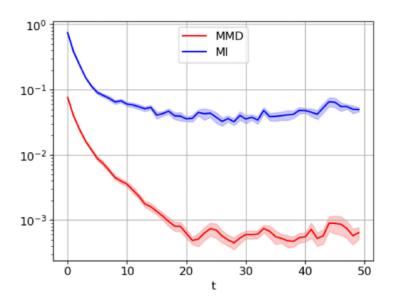


• MIRI reconstruct each mode accurately.

Toy Data

How well can MIRI reconstruct the ground turth?

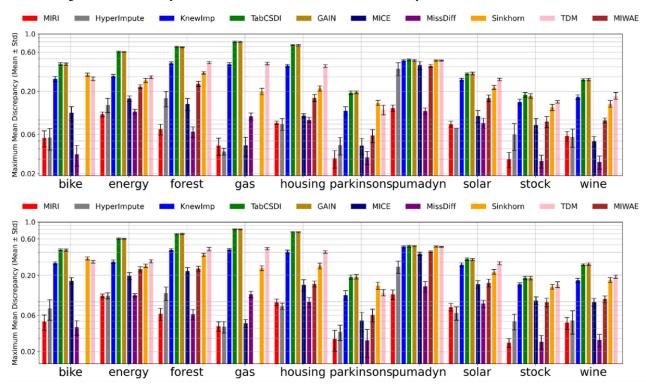
Performance Metric: $\mathrm{MMD}(x^*, \hat{x}^{(t)})$. The lower the better.



 $\mathrm{MI}(\hat{x}^{(t)},m)$ aligns with MMD well, indicating it is a good "loss function" for the missing data imputation.

Tabular Data (UCI Benchmark)

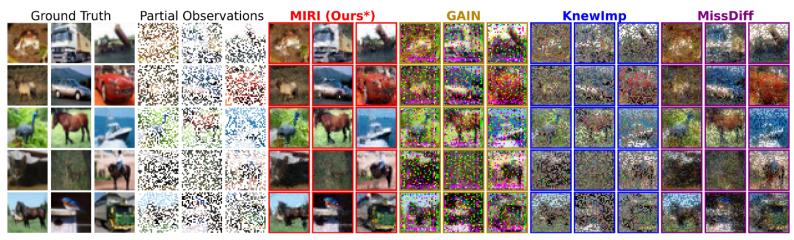
Reconstruct UCI datasets with 60% missing. Performance measured by MMD (the lower the better).



• MIRI is among the best. Round-robin methods are strong.

Image Data (CIFAR10)

32 by 32 images, with 60% randomly missing, using 5000 samples for training v.

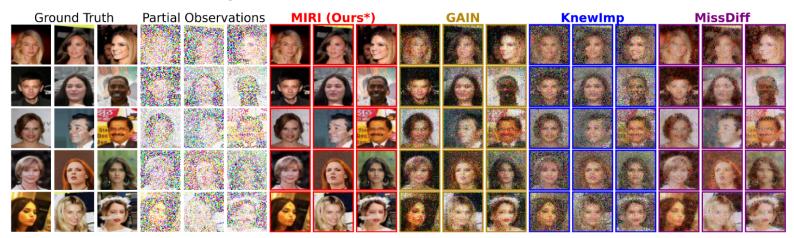


(a) 15 uncurated 32×32 CIFAR-10 images and their imputations. Pixels are removed from all RGB channels.

- MIRI has the best visual quality.
- Round-robin methods (e.g., MICE) is too slow.

Image Data (CelebA)

64 by 64 images, with 60% randomly missing, using 5000 samples for training v.



(b) 15 uncurated 64×64 CelebA images and their imputations. Pixels are removed from each RGB channel independently.

MIRI has the best visual quality.

Wait, what about MAR data?

- Recall, MIRI is constructed to enforce the necessary condition of MCAR, i.e., $\hat{x} \perp \!\!\! \perp \!\!\! m$.
- For MAR data, the necessary condition of perfect imputation is $\hat{x}_{1-m} \bot m | \hat{x}_m$, leading to minimizing a conditional MI: $\mathrm{MI}(\hat{x}_{1-m}, m; x_m)$.
- Long story short, the **optimal iterative imputer** that minimizes $MI(\hat{x}_{1-m}, m; x_m)$ is also:

$$p_{\hat{x}^{(t)}}(x_{1-m}|x_m,m) = p_{\hat{x}^{(t-1)}}(x_{1-m}|x_m).$$

MIRI also works for MAR data.

MAR Tabular Data (UCI Benchmark)

Reconstruct UCI data with 40% and 80% missing MAR.

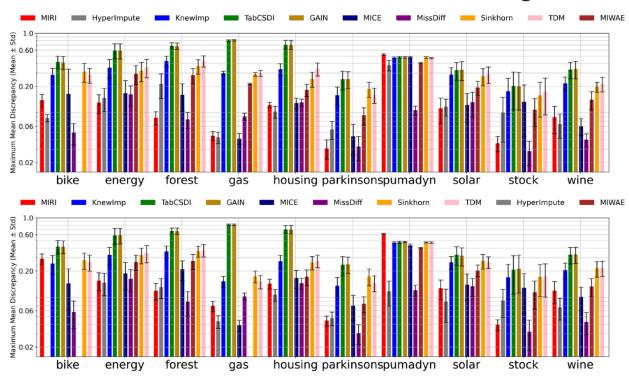


Figure 6: MAR MMD on 10 UCI datasets (Above: 40% missingness, Below: 80 % missingness). The lower the better.

MIRI performance remains strong.

Conclusion

- MIRI is inspired by GAIN, and is a generative method for missing data imputation.
- It can be seen as enforcing the necessary condition of MCAR and MAR.
 - through MI minimization.
- The exact MI minimization can be carried out by repeated rectified flow, and its imputations are promising when compared with some recent imputers.

References

- 1. Jinsung Yoon, James Jordon, Mihaela van der Schaar, GAIN: Missing Data Imputation using Generative Adversarial Nets, ICML2018, 2018.
- 2. Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, Mihaela van der Schaar, HyperImpute: Generalized Iterative Imputation with Automatic Model Selection, ICML2023.
- 3. Xingchao Liu, Chengyue Gong, Qiang Liu, Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023.