

HyperMixup: Hypergraph-Augmented with Higher-order Information Mixup

Kaixuan Yao¹, Zhuo Li¹, Jianqing Liang^{1*}, Jiye Liang¹, Ming Li², Feilong Cao³

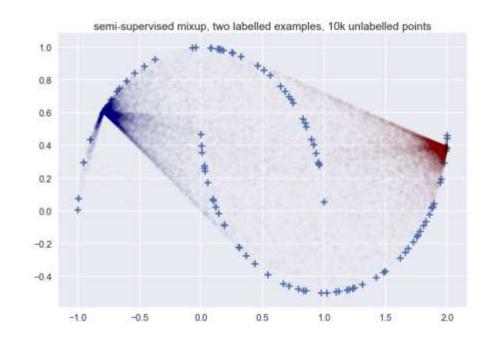
¹ Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan, China.

² Zhejiang Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China

³ School of Mathematics, Institute of Mathematics and Cross-disciplinary Science, Zhejiang Normal University, China

The Problem: Hypergraph Learning is Data-Hungry

- **■** The Problem: Beyond Pairwise Mixup.
 - Hypergraphs: Natural model for multi-way interactions.
 - Challenge: Standard Mixup violates group semantics.
 - Need: Augmentation that respects higher-order topology.



The HyperMixup Framework

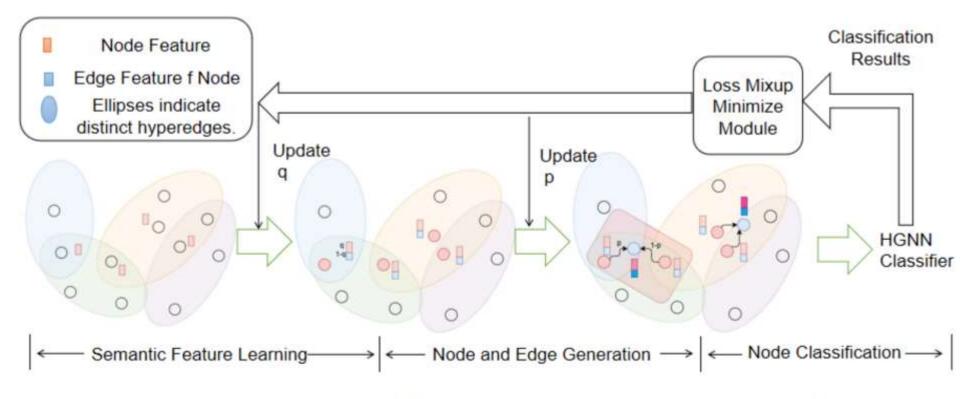


Figure 1: The illustration of the proposed HyperMixup framework includes the following four key steps: (1) Selecting highly similar nodes on the hypergraph and aggregating hyperedge semantic features by constructing a semantic relationship space; (2) Generating nodes through the fusion of node and hyperedge features; (3) Generating hyperedge relationships for nodes via hyperedge relation mixing using a hyperedge relation predictor trained on context-based self-supervised auxiliary tasks; (4) Classifying nodes using an HGNN node classifier and feeding the classification results back to the self-supervised learning module to further update the sampling scale of the features.

Method HyperMixup: Semantic-Aware Mixing

The CCA Pipeline: A Three-Step Process

Step 1: Structure-Aware Pairing

Select nodes using dual similarity:

$$s(v_i, v_j) = \underbrace{\cos(x_i, x_j)}_{ ext{Feature}} + \mu \cdot \underbrace{\cos(x_{e_i}, x_{e_j})}_{ ext{Hyperedge}}$$

Step 3: Feature Aggregation & Output

- \circ Mix nodes: $\mathbf{x}' = \lambda \mathbf{x}_i + (1 \lambda) \mathbf{x}_j$
- Enhance with hyperedge context.

Theoretical Foundation: Why It Works?

- HyperMixup induces hypergraph-specific regularization.
- Theorem 1 (Regularization):

$$\mathcal{L}_{mix} pprox \mathcal{L}_{std} + \underbrace{\mathcal{R}_1}_{ ext{Gradient Alignment}} + \underbrace{\mathcal{R}_2}_{ ext{Smoothness}} + \underbrace{\mathcal{R}_3}_{ ext{Curvature}}$$

- $\circ~\mathcal{R}_2 \propto
 abla f^T \Sigma_e
 abla f$: Penalizes sharp changes along hyperedge covariance Σ_e .
- Provides robustness guarantees.

Experiments

■Main Results

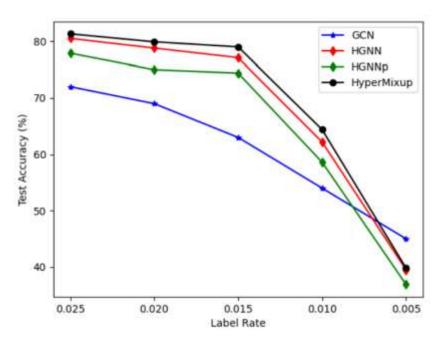
Table 2: Comparison of different methods: node classification Accuracy. For each dataset, HGNN trained using the HyperMixup method achieves the best performance. The best are highlighted in bold.

Method	Cora	Pubmed	CiteSeer	ModelNet40	NTU2012
GCN	81.50%	79.00%	70.30%	94.85%	80.43%
GAT	83.0%	79.00%	72.5%	95.75%	80.16%
GraphSAGE	83.2%	-%	-%	94.73%	80.7%
GraphConv	82.19%	-%	70.35%	95.66%	80.96%
HyperGCN	64.11%	73.09%	64.11%	95.46%	81.77%
Hyper-Atten	82.61%	79.00%	70.88%	96.11%	81.50%
HGNN	82.09%	78.60%	71.60%	96.80%	83.11%
HGNN+	76.71%	75.08%	66.43%	96.92%	84.18%
HyperMixup	83.60%	79.50%	72.20%	97.04%	85.50%

Table 3: Comparison with graph-based augmentations (Accuracy %)

Backbone	Method	Cora	PubMed	CiteSeer
GNN	Mixup	81.84±0.94	79.16±0.49	72.20±0.95
	GraphMixup	82.16±0.74	78.82±0.52	72.13±0.86
HGNN	Mixup	81.09±0.56	78.02±0.36	70.40±0.86
	GraphMixup	82.16±0.74	78.82±0.52	72.13±0.86
HGNN+	Mixup	76.70±0.86	74.90±0.14	66.20±0.84
HGNN	HyperMixup (Ours)	83.62±0.76	79.50±0.88	72.60±0.68
HGNN+	HyperMixup (Ours)	84.02±0.52	80.04±0.32	73.02±0.82

■Robustness Analysis



Conclusion

- ➤ Core Contribution: We introduced HyperMixup, the first hypergraph-aware data augmentation framework that unifies feature mixing with higher-order topological constraints.
- **Key Innovation:**
 - Structure-Guided Mixing: A principled pipeline from node pairing to topology reconstruction.
 - Theoretical Depth: Provides regularization guarantees and robustness bounds.
- ➤ Proven Impact: Delivers consistent, state-of-the-art performance across diverse tasks, especially powerful in low-label and noisy regimes.

Thanks

