EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining

Boshen Xu¹ Yuting Mei¹ Xinbi Liu¹ Sipeng Zheng² Qin Jin^{1*}

¹ AIM3 Lab, Renmin University of China ² BeingBeyond

Egocentric Videos: How Humans See the World

VR/AR

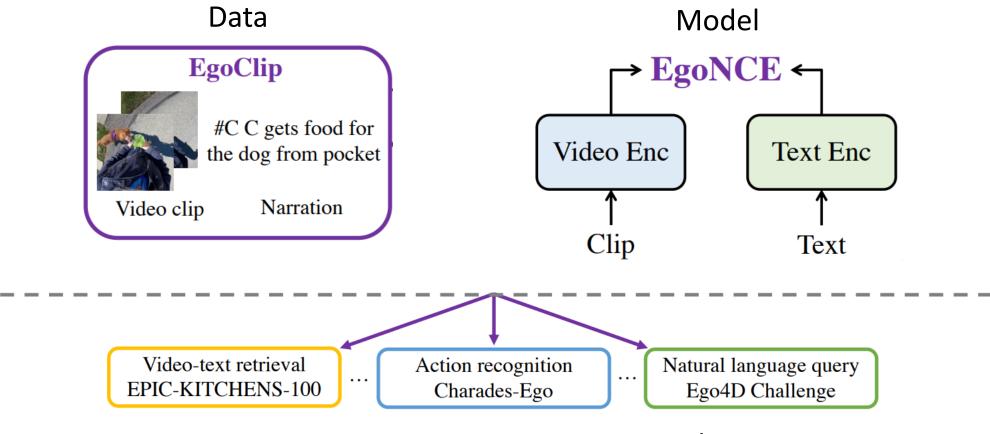
making salad

Egocentric view

Ego4Robotics

Transferable knowledge for manipulation

Literature of Ego-Visual-Text Pretraining

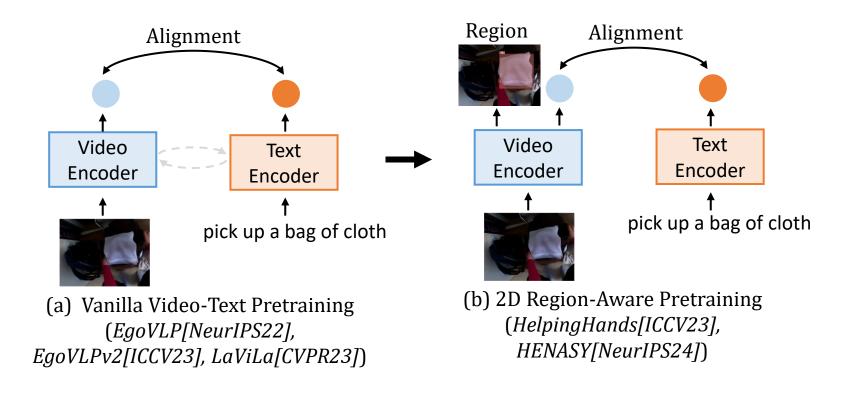


Great Success in Downstream Tasks

EgoVLP, Lin et al., [NeurIPS2022]

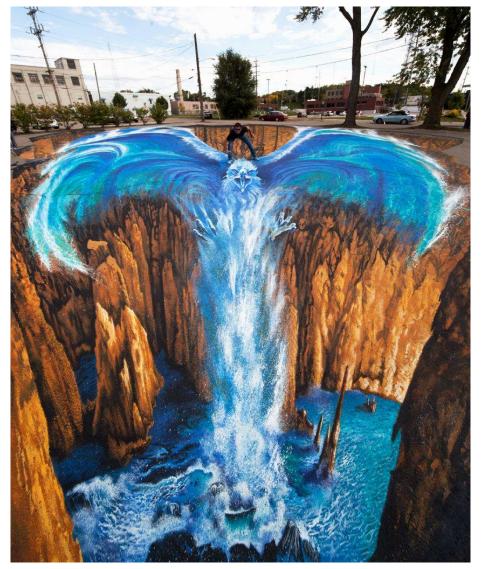
Literature of Ego-Visual-Text Pretraining

Enhance performance with region-aware representations



Wait! The world is not a 2D Flat! Let's consider how humans perceive the 3D world...

We Hallucinate 3D Information by Our Knowledge



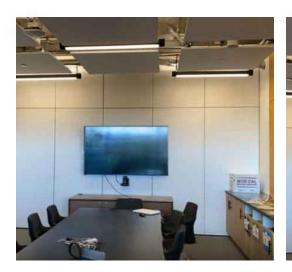
Humans Live in a 3D World

Through embodied experiences, we humans excel in understanding 3D spatial relations, as well as interacting with the world with 2D vision.



2D-to-3D Imagination

Spatial Sensing



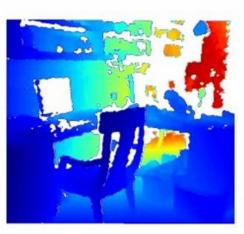
Multi-view Consistency

But...VLPs Fall Short in 3D Perception

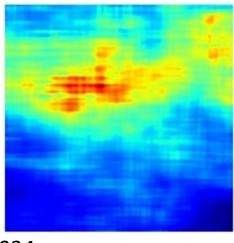
Current models are trained by text in advance of vision signals, strongly lacking in spatial perception ability.

img

GT



CLIP



Direction estimation

Q: Pretend that you are standing facing the stove as shown in this image. At what direction (in degrees) is the storage chest relative to you?

Choices:

A) -49 B) 11

C) -10 D) 41

Probe3D, Mohamed et al., CVPR2024

Observation space: Ego image

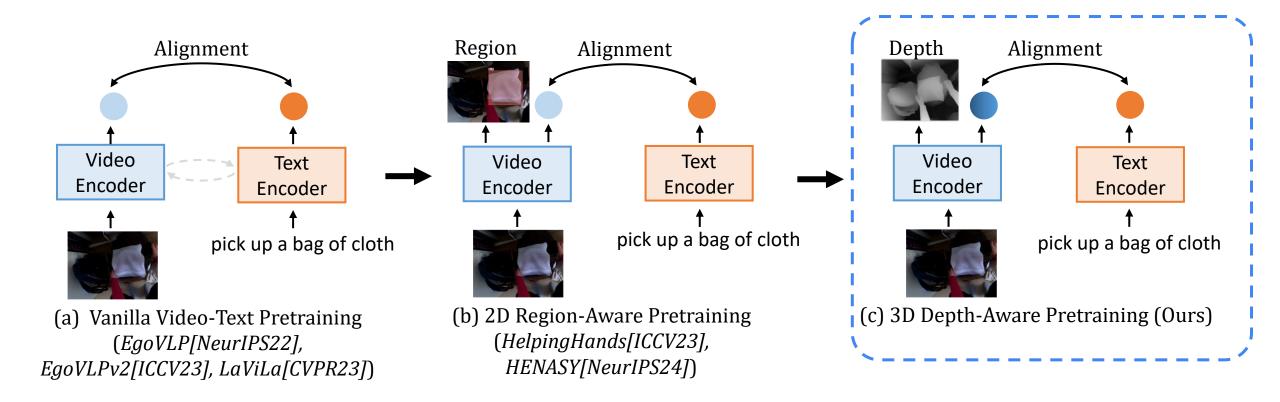
Method	Direction estimation	Distance estimation	Map sketching	Route retracing	Novel shortcuts	Average
Human	82.8	83.2	96.6	-	-	-
GPT-40 GPT-4v	$32.0 \pm 4.1 \\ 29.7 \pm 0.3$	$36.5 \pm 5.0 \\ 31.9 \pm 2.7$	33.3 ± 4.1 20.0 ± 11.8	$6.6 \pm 3.6 \\ 1.6 \pm 1.2$	$6.4 \pm 1.0 \\ 3.9 \pm 0.9$	23.0 17.4
Chance	25.0	25.0	25.0	0.0	0.0	15.0

SPACE, Santhosh et al., ICLR2025

How to develop 3D-aware 2D VLP?

Towards 3D-Aware EgoVLP

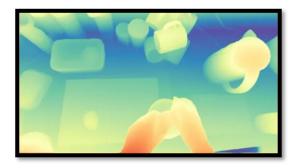
Let's define 3D as Depth Maps, then Pretrain video encoder with both depth and text



Challenges for Developing 3D-aware EgoVLP

Architecture for Joint Learning from Heterogeneous Supervision

Dense pixel-level knowledge



Depth (Geometry, Relation)

- Sparse non-pixel-level knowledge
 Text A person squeezes the lemon
- → Main Idea: Simplify the learning difficulty for depth estimation

Data Scarcity for

Million-level (video, Depth, Text)

Lack of paired (visual, depth) data

Massive

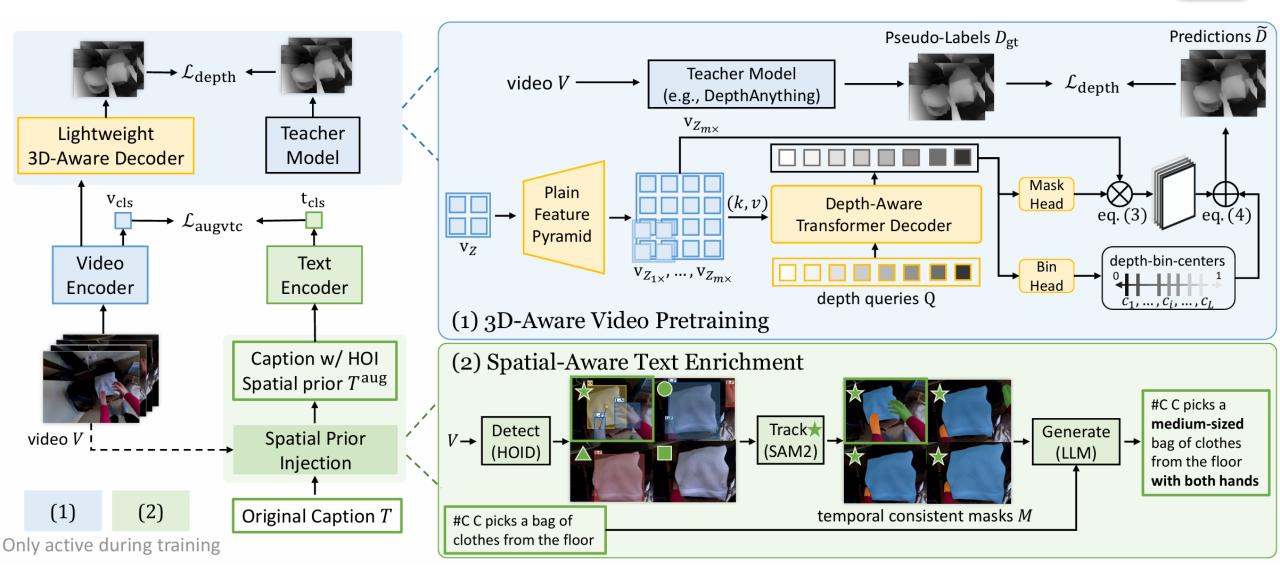
Few

• Short text descriptions, may not contribute to spatial awareness

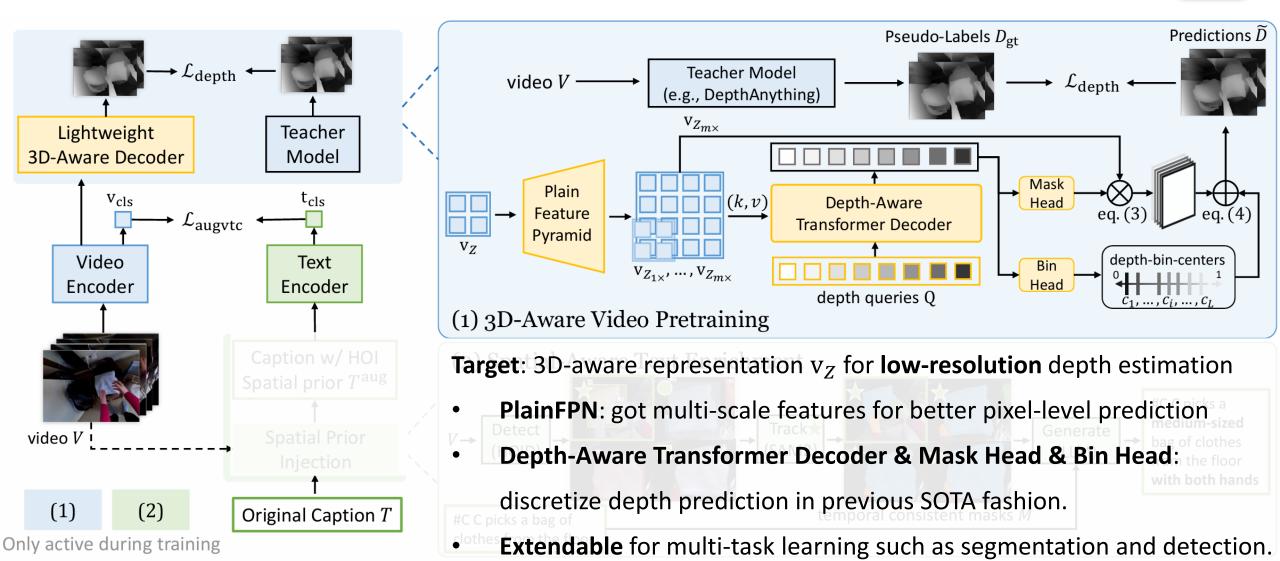
Raw Text A person squeezes the lemon

→ Main Idea: Data generation via visual foundation models

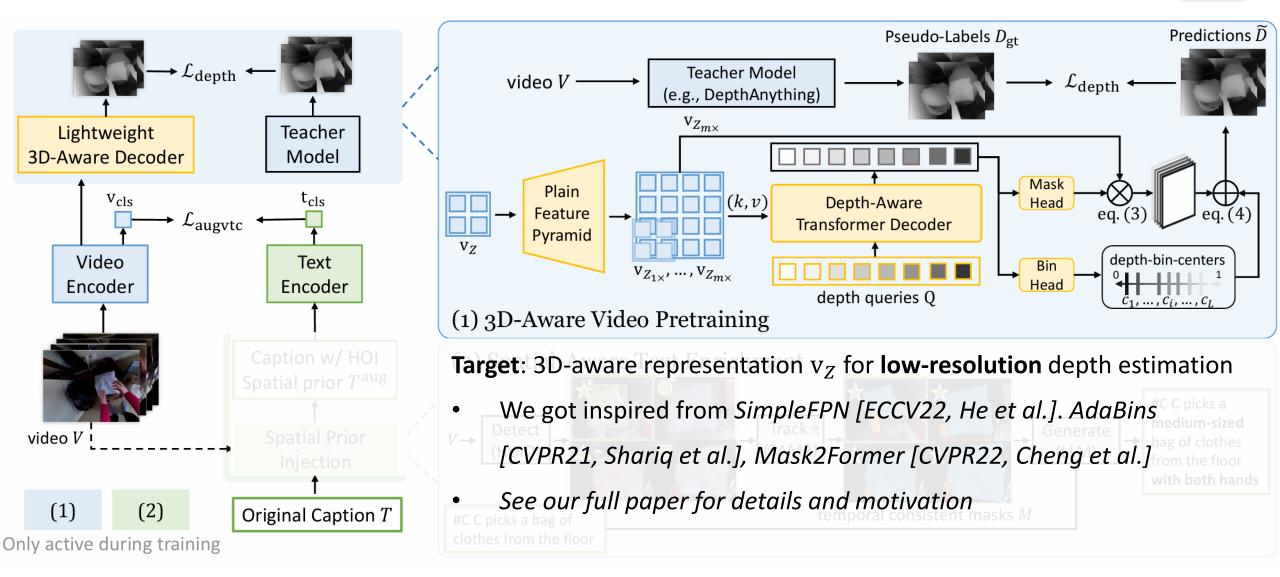
EgoDTM: Egocentric Depth- and Text-Aware Model



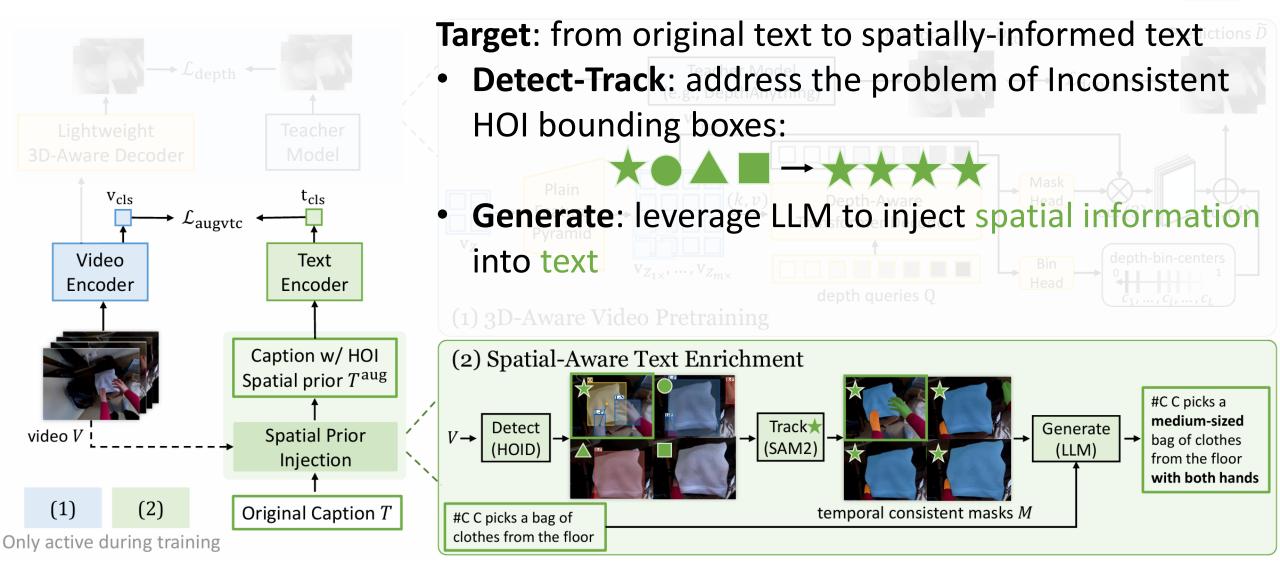
Lightweight 3D-Aware Decoder Design



Lightweight 3D-Aware Decoder Design



Detect-Track-Generate Pipeline



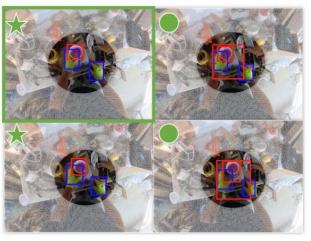
Case of Our Robust Data Generation



Original Video



Temporal Consistent HOI Masks



Inconsistent HOI Boxes

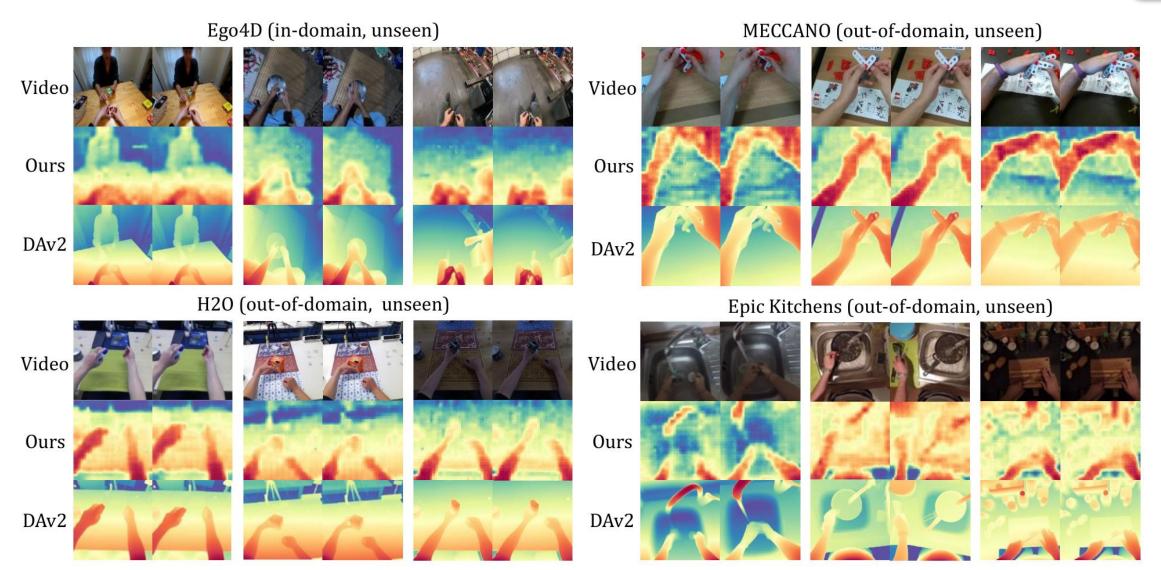
- **Original Captions:**
- #C C adjusts a mug on a weighing plate
- **Spatial-Aware Captions:**

#C C adjusts a small mug on a weighing plate with the left hand, it slightly to the right and downward, while the right hand maintains contact with the stationary object

Spatial-Aware Captions

- Small objects
- Noisy background
- Consistent HOI masks

Generalization of the 3D-Aware Decoder



Evaluation Setups

■ Main Results

Short Video Understanding: video-text retrieval (Epic-Kitchens-100, EgoMCQ), action recognition

(EGTEA, Epic-Kitchens-100-CLS)

Long Video Understanding: natural language query (EgoNLQ), moment query (EgoMQ)

3D-Aware Tasks: robot manipulation (Franka Kitchen), Depth estimation (H2O)

■ Pretraining Datset

2M (Video, Text) data + 2M (Video, Enriched Text, Depth) data

■ Evaluation Setting

Zero-shot: Directly apply evaluation after pretraining

Fine-tune: Fine-tune on downstream tasks

Superior Performance on Short Video Understanding

grab plates →

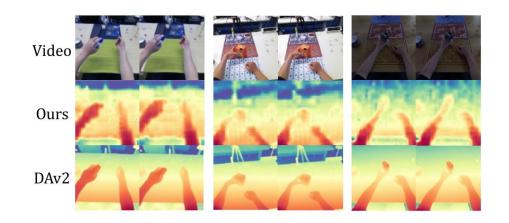
Which are the most relevant?

What am I doing?

	Epic-Kitchens-100-MIR						EG7	ΓEA	Egol	MCQ
Method	$\begin{array}{ c c c c c c }\hline mAP(\%) & & \\ V \rightarrow T & T \rightarrow V & Avg. & \\ \end{array}$		$ \begin{array}{c c} nDCG(\%) \\ V \rightarrow T & T \rightarrow V & Avg. \end{array} $		mean	top1	Inter	Intra		
EgoVLP [36]	26.0	20.6	23.3	28.8	27.0	27.9	_	-	90.6	57.2
EgoVLPv2 [51]	35.1	26.6	30.8	33.7	30.4	32.0	30.9	35.1	91.0	60.9
LaViLa [87]	35.1	26.6	30.8	33.7	30.4	32.0	30.9	35.1	93.6	59.1
AVION [86]	37.1	28.7	32.9	34.4	31.0	32.7	38.6	42.3	94.4	62.1
HelpingHands* [80]	35.6	26.8	31.2	34.7	31.7	33.2	29.4	35.3	93.2	58.8
HENASY* [47]	35.5	27.1	31.3	34.6	31.7	33.2	29.6	35.9	94.1	61.3
EgoDTM (ours)	37.9	29.1	33.5	34.8	31.9	33.4	40.2	43.2	94.6	63.6

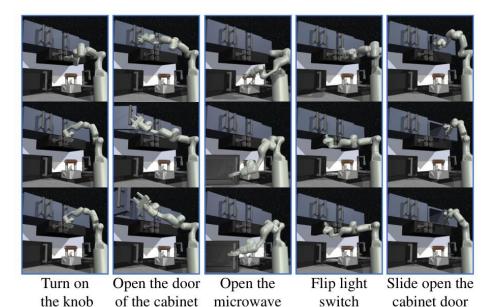
Improvement of VLP's 3D-Awareness

The egocentric video encoder functions as visual feature extractor, then process by task-specific methods.



Depth Estimation

Method	Scale-Aware Metrics				Scale-Invariant Metrics			
Method	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	$RMSE \downarrow$	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	$RMSE \!\!\downarrow$
ConvNext [40]	0.721	0.965	0.991	0.644	0.727	0.969	0.996	0.593
CLIP [52]	0.795	0.966	0.988	0.624	0.811	0.976	0.994	0.559
EgoVLP [36]	0.778	0.954	0.989	0.610	0.853	0.977	0.996	0.497
LaViLa [87]	0.801	0.954	0.987	0.598	0.811	0.964	0.993	0.552
AVION [86]	0.786	0.960	0.991	0.606	0.812	0.969	0.996	0.543
EgoDTM (ours)	0.826	0.964	0.993	0.539	0.848	0.977	0.998	0.481

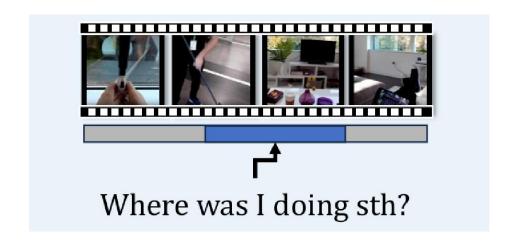


the knob

Robot Manipulation

Method	TK	OD	OM	FS	SD	Average
R3M [45]	53.3%	50.7%	59.3%	86.3%	97.7%	69.4%
MPI [26]		54%	44.5%	93.5%	100%	75%
ResNet [24]	28%	18%	26.7%	50%	75.5%	39.7%
CLIP [52]	26.3%	13%	24.7%	41.7%	86.3%	38.4%
LaViLa [87]	48%	26%	22.5%	69%	94.5 %	52%
EgoDTM (ours)	56%	28%	35.5%	81%	92.5%	58.6%

Competitive on Long Video Understanding



The egocentric video encoder functions as visual feature extractor, then process by task-specific methods.

Natural language query: free-form text query

Method	R1@0.3	R5@0.3	R1@0.5	R5@0.5
EgoVLP [36]	6.32	13.84	3.41	8.80
LaViLa [87]	7.12	14.82	3.87	9.55
AVION [86]	7.33	14.89	4.31	9.53
EgoDTM (ours)	8.13	16.11	4.83	10.30

Moment query: action category query

Method	R1@0.3	R5@0.3	R1@0.5	R5@0.5
EgoVLP [36]	30.44	46.66	22.41	35.75
LaViLa [87] AVION [86]	32.9 32.17	48.68 47.3	24.12 23.11	37.59 36.3
EgoDTM (ours)	32.92	50.08	23.94	39.15

Ablations on Major Components

- Generally improves over downstream benchmarks
- Text-depth joint learning strategy still have room to explore

Metrics	EK100MIR mAP / nDCG ↑	EgoMCQ inter / intra acc ↑	EK100CLS top-1 / top-5 acc ↑	EgoNLQ mIoU↑	EgoMQ mAP↑	DE scale-aware RMSE / scale-invariant RMSE \
$\mathcal{L}_{ ext{vtc}}$	29.7 / 30.7	94.2 / 60.2	12.847 / 30.037	6.14	6.97	0.572 / 0.495
$\mathcal{L}_{ ext{vtc}} + \mathcal{L}_{ ext{depth}}$	31.3 / 31.2	94.2 / 62.6	15.412 / 32.995	5.98	7.52	0.5637 / 0.464
$\mathcal{L}_{ ext{augvtc}}$	31.3 / 32.2	94 / 61.6	16.508 / 32.851	6.53	6.14	0.550 / 0.489
$\mathcal{L}_{ ext{augvtc}} + \mathcal{L}_{ ext{depth}}$	33.1 / 33.1	94.6 / 62.6	15.898 / 33.895	6.17	8.87	0.539 / 0.481

Conclusion

- We introduce EgoDTM, a 3D-aware egocentric video-language model learned from 3D-aware video-language pretraining
- We develop a lightweight 3D-aware decoder for depth estimation and a data construction pipeline to enrich captions with spatial infor mation.
- Extensive experiments demonstrate that EgoDTM significantly enhances
 performance on video understanding tasks like video-text matching, and 3D
 understanding tasks like robot manipulation.

Discussion

- Broader Generalization: While EgoDTM demonstrates strong performance in egocentric hand-object interaction scenarios, its generalization to broader indoor scenarios remains limited.
- 3D-Aware MLLM: Further exploration may include integrating 3D-aware visual encoders into *multimodal large language models (MLLM)* to enhance spatial awareness.
- More 3D Geometry pretraining: Moreover, pretraining large-scale spatial-aware egocentric models with richer 3D signals such as camera parameters and point maps, as explored in VGGT, remains a promising yet challenging direction.