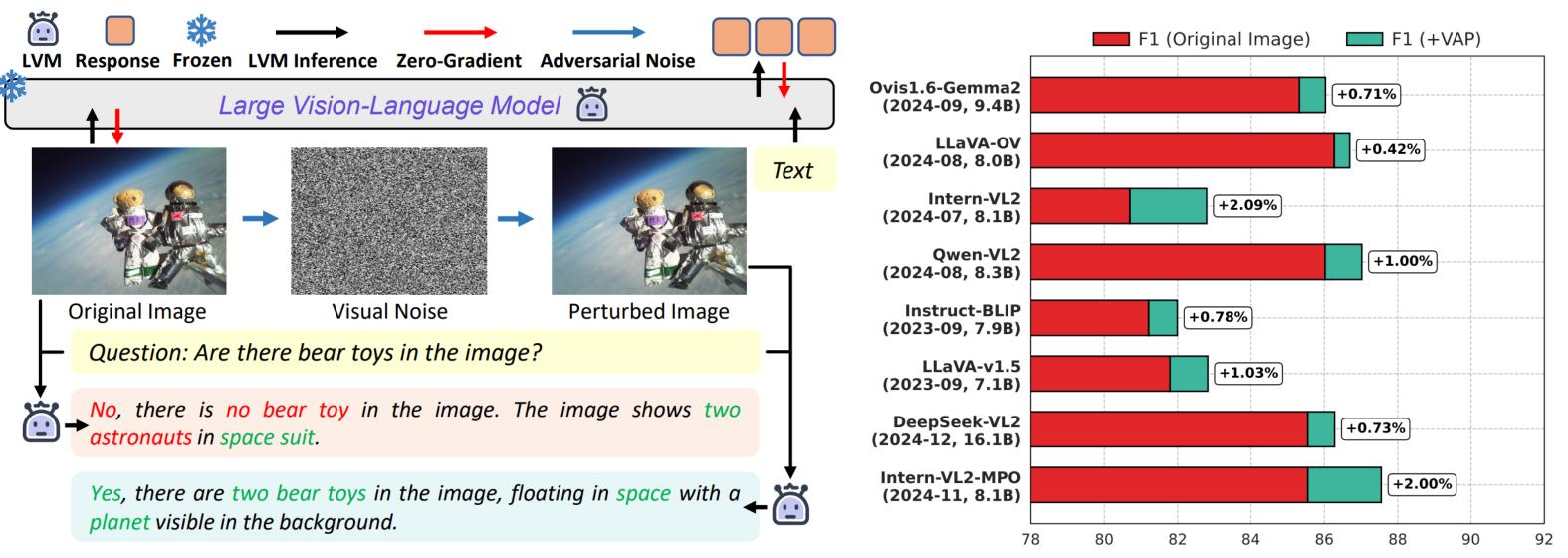
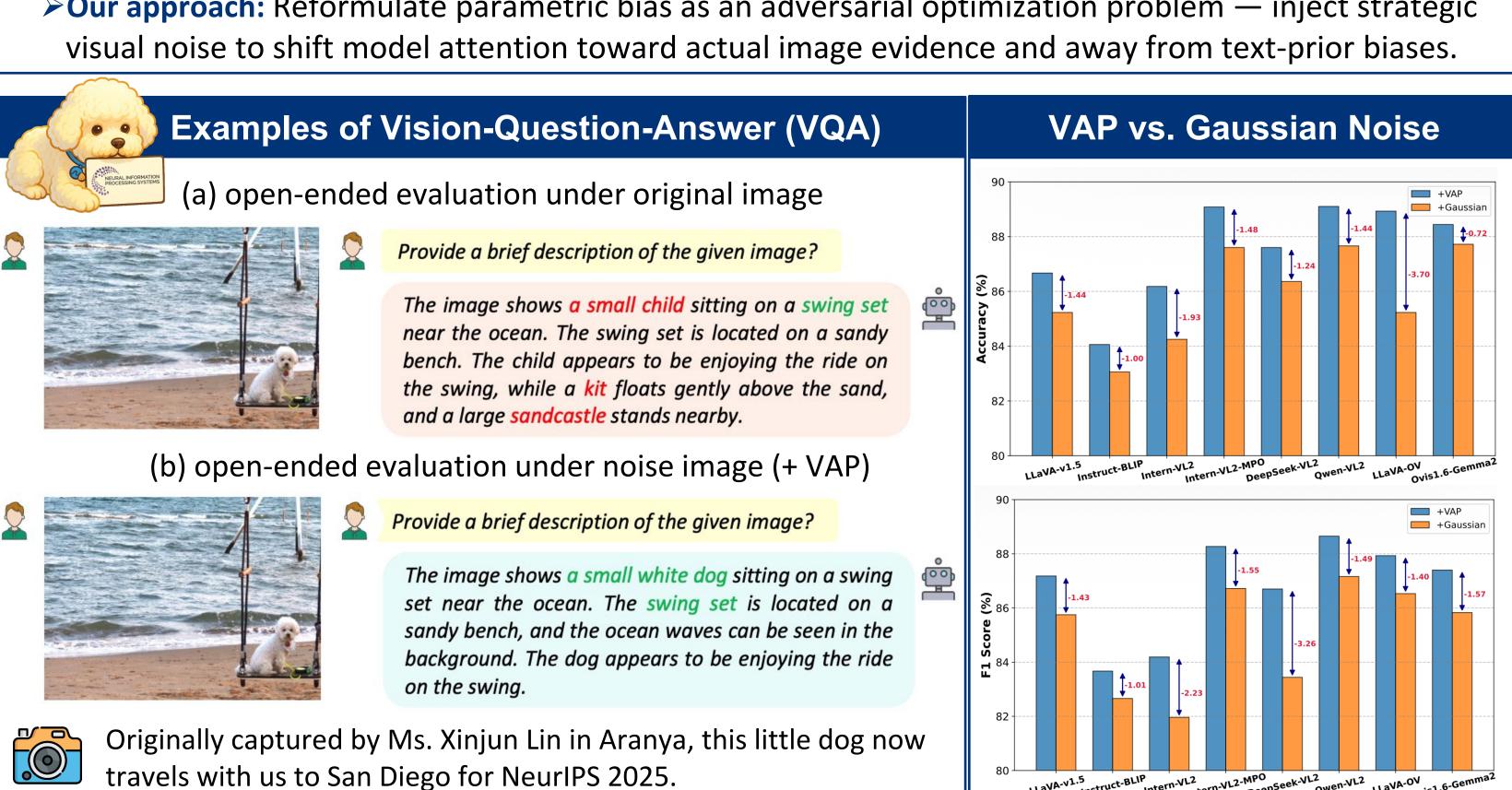


Poison as Cure: Visual Noise for Mitigating Object Hallucinations in LVMs

Zero-Gradient


Kejia Zhang, Keda Tao, Jiasheng Tang, Huan Wang*

MLLM)


Introduction & Motivation

1. Why LVMs Hallucinate: Parametric Bias

- Bias 1: Dominance Bias
 - **LLMs** dominate due to massive scale compared to vision encoders.
 - Causes models to over-rely on language priors, ignoring visual grounding.
- Bias 2: Parametric Knowledge Bias
 - MLLMs encode biased world knowledge from pretraining (e.g., long-tail data imbalance), overfit to frequency exists objects.
 - Model outputs reinforce superficial correlations.
- 2. Key Idea: Turning Parametric Bias into Beneficial Visual Noise

- >A new perspective view: Hallucination stems from input conditioning, not model incapability.
- >Our approach: Reformulate parametric bias as an adversarial optimization problem inject strategic

Method **Original Image Visual Adversarial Optimization** Adversarial Knowledge Original Image Yes, there is an airplane in the image. Large Vision-Language Model LVM 🔄 Prompt {c}: Is there an airplane in Perturbed Image the image? Text Encoder Null Text {Ø} Encoder No, there is no airplane in the Text Encoder image. LVM 🔯

Goal: Inject noise $\delta \rightarrow$ enforce visual grounding \rightarrow suppress parametric bias.

LVM Inference

(1) Visual–Text Alignment

- (2) Bias Exposure via Distorted Views
- (3) Zero-Gradient Noise Optimization

• Solve $\delta = \arg \max \mathcal{L}(x, \delta)_{\|\delta\| \le \epsilon}$

Semantic Similarity

• Match $f(x + \delta, c)$ with $f(x + \delta, \emptyset)$

Reduce prompt-driven hallucination

- Contract $x + \delta$ with distorted image \bar{x} • Push apart $f(x + \delta, \cdot)$ and $f(\bar{x}, \cdot)$
 - Training-free, model-agnostic

Noise Generation

Experiments

. POPE & BEAF Benchmark: Consistent Hallucination Reduction Across 8 LVMs

LVM	Vision Input	POPE-Popular		POPE-Random		POPE-Adversarial		BEAF	
		Acc↑	F1↑	Acc↑	F1↑	Acc↑	F1↑	Acc↑	F1↑
LLaVA-v1.5	Original	85.57	86.19	88.97	89.09	79.80	81.79	79.99	74.06
	+VAP	86.67 +1.10	87.18 +0.99	90.00 +1.03	90.07 +0.98	80.97 +1.17	82.82 +1.03	80.36 +0.37	74.35 +0.29
Instruct-BLIP	Original	83.30	82.85	88.13	87.18	81.33	81.21	81.91	73.55
	+VAP	84.06 +0.76	83.67 +0.82	89.00 +0.87	88.12 +0.99	82.03 +0.70	81.99 +0.78	82.07 +0.16	73.96 +0.41
Intern-VL2	Original	84.11	81.64	85.14	82.60	82.00	80.70	88.38	79.10
	+VAP	86.18 +2.07	84.19 +2.00	86.30 +1.16	84.08 +1.48	84.81 +2.81	82.79 +2.09	88.69 +0.31	79.72 +0.62
Intern-VL2-MPO	Original	87.51	86.53	88.68	87.58	86.28	85.55	89.21	82.56
	+VAP	89.08 +1.57	88.27 +1.74	90.20 +1.52	89.30 +1.72	88.13 +1.85	87.55 +2.00	89.63 +0.42	82.72 +0.18
DeepSeek-VL2	Original	86.80	85.86	88.70	87.64	86.47	85.55	89.39	82.51
	+VAP	87.60 +0.80	86.70 +0.84	89.30 +0.60	88.31 +0.67	87.13 +0.66	86.28 +0.73	89.72 +0.33	83.12 +0.61
Qwen-VL2	Original	88.13	87.68	90.60	89.99	86.27	86.02	87.96	81.13
	+VAP	89.10 +0.97	88.65 +0.97	91.16 +0.56	90.54 +0.55	87.30 +1.03	87.02 +1.00	88.39 +0.43	81.57 +0.44
LLaVA-OV	Original	88.30	87.33	89.53	88.51	87.17	86.27	90.76	84.53
	+VAP	88.93 +0.63	87.93 +0.60	89.87 +0.34	88.83 +0.32	87.76 +0.59	86.69 +0.42	91.07 +0.33	85.01 +0.48
Ovis1.6-Gemma2	Original	87.96	86.88	88.96	87.87	86.22	85.32	90.12	83.04
	+VAP	88.44 +0.48	87.40 +0.52	89.59 +0.65	88.54 +0.67	86.85 +0.63	86.03 +0.71	90.91 +0.79	84.53 ^{+1.49}

2. Proxy-Based VAP: 1/8× Cost with Comparable Gains

Black-Access

Metric	\mathbf{S}	Source: Intern-VL2-1	Source: Qwen-VL2-2B		
TVICTIC	\Rightarrow Intern-VL2-1B	⇒ Intern-VL2-4B	⇒ Intern-VL2-8B	\Rightarrow Qwen-VL2-2B	⇒ Qwen-VL2-7B
Accuracy	81.69/ 83.28	81.55/ 82.56	82.00/ 84.07	84.47/ 85.42	86.27/ 86.87
Precision	89.72/ 92.13	85.65/ 87.21	87.40/ 90.97	83.98/ 84.85	87.21/ 88.03
Recall	70.94/ 72.34	75.05/ 75.90	72.24/ 75.50	84.04/ 85.26	84.87/ 85.33
F1 Score	79.23/ 81.04	80.00/ 81.16	80.70/ 82.52	84.01/ 85.05	86.02/ 86.66
Inference Cost Reduction	1×	1/3×	1/8×	1×	1/5×