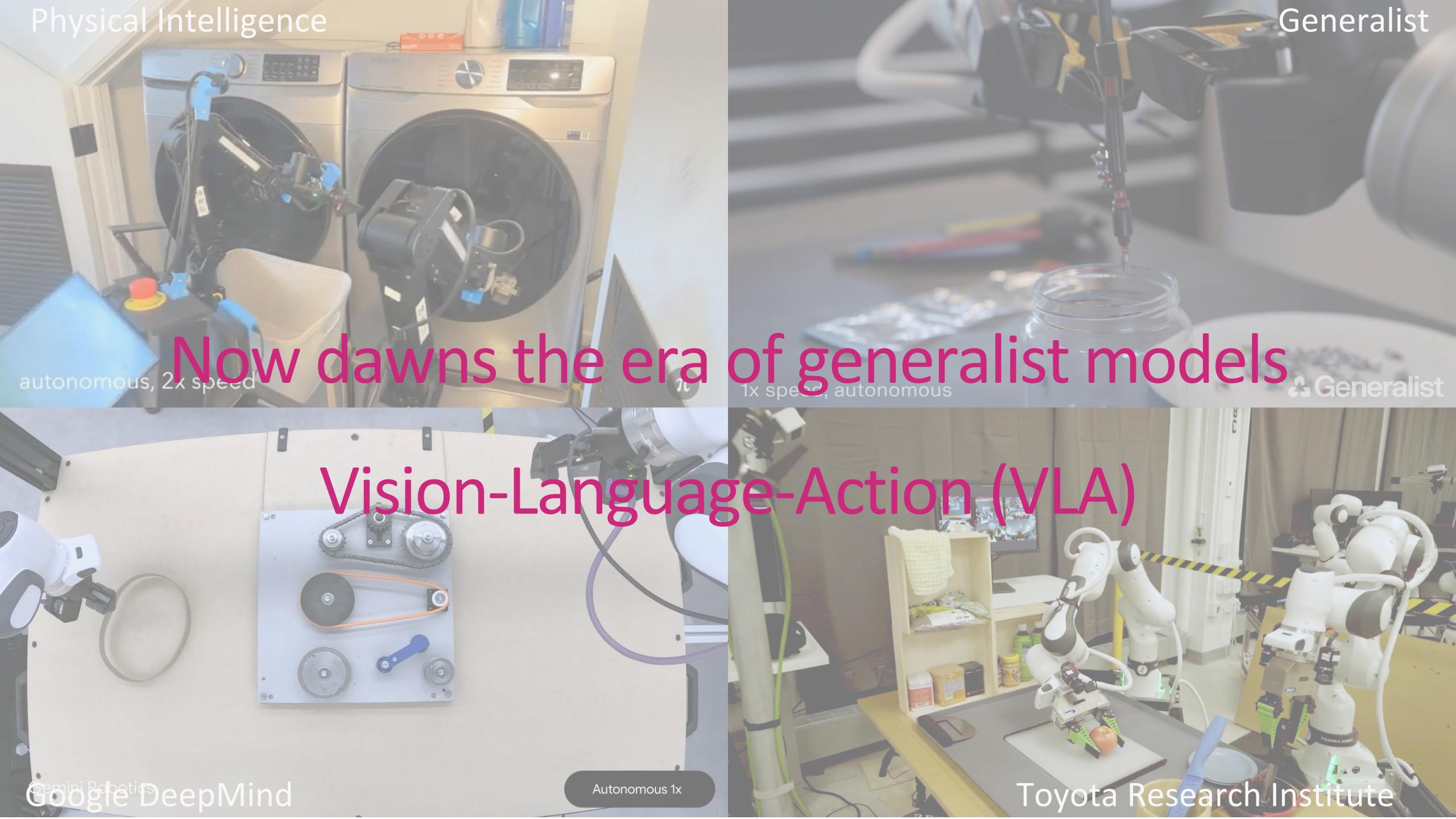


What can RL bring to VLA generalization?

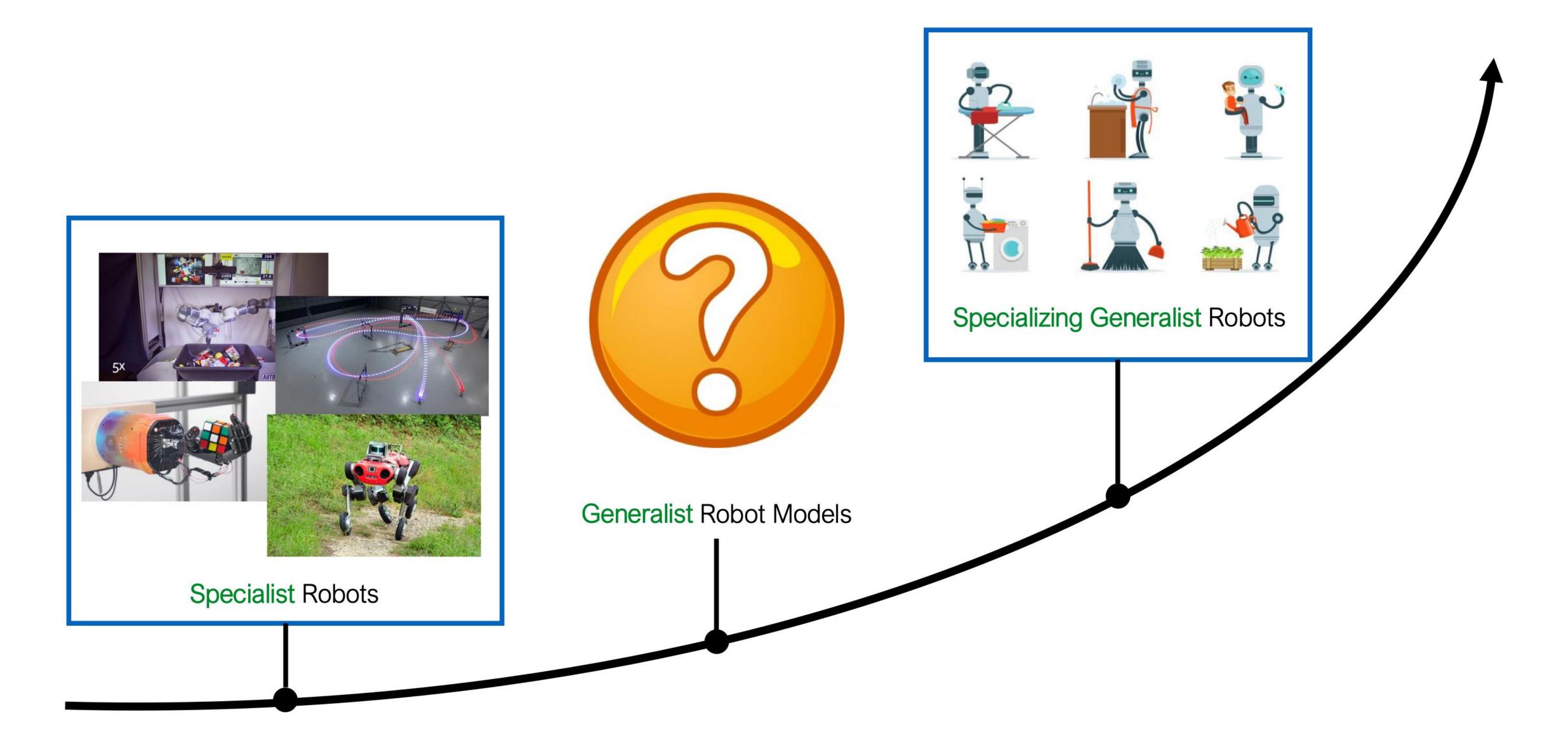
An Empirical Study

Jijia Liu*, Feng Gao*, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu+, Yu Wang+

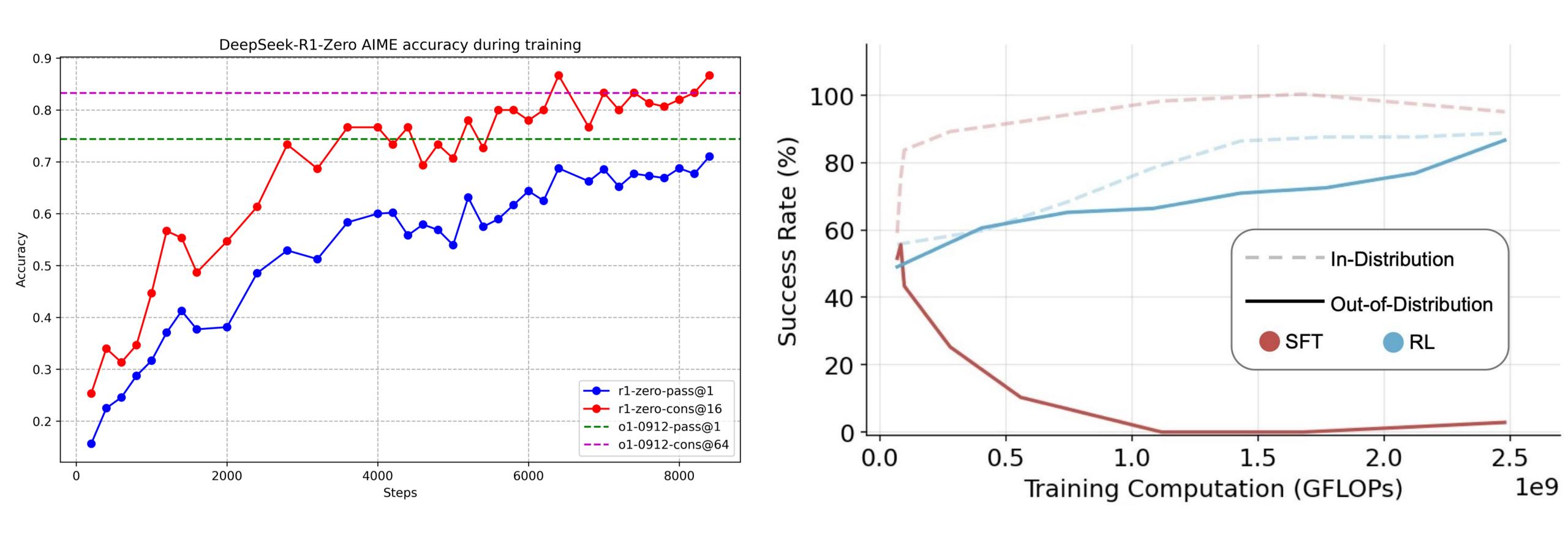
* Equal contribution + Corresponding Authers



Specialist → Generalist → Specialized Generalist

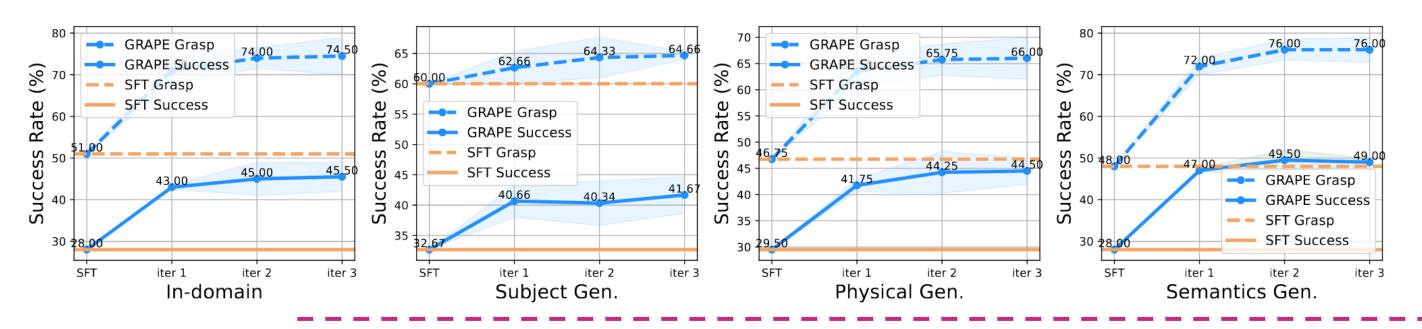


RL is helpful for LLMs and VLMs



RL can help long reasoning and OOD generalization

RL can also improve VLA models

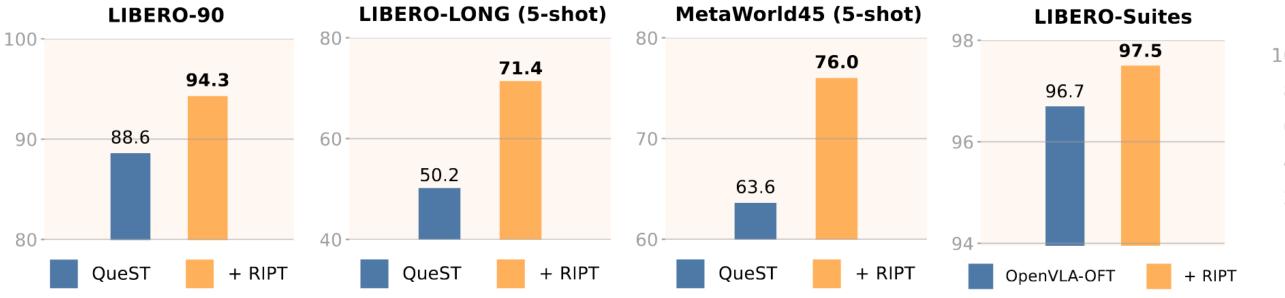


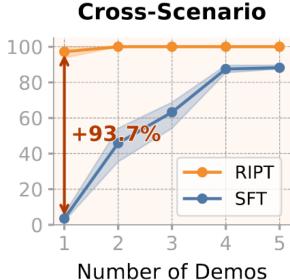
[Zhang et al. GRAPE]

arXiv:2411.19309

[Tan et al. RIPT-VLA]

arXiv:2505.17016



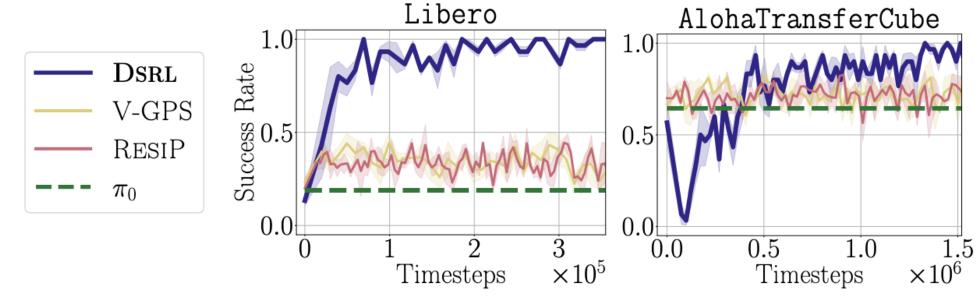


[Lu et al. VLA-RL]

arXiv:2505.18719

[Wagenmaker et al. DSRL]

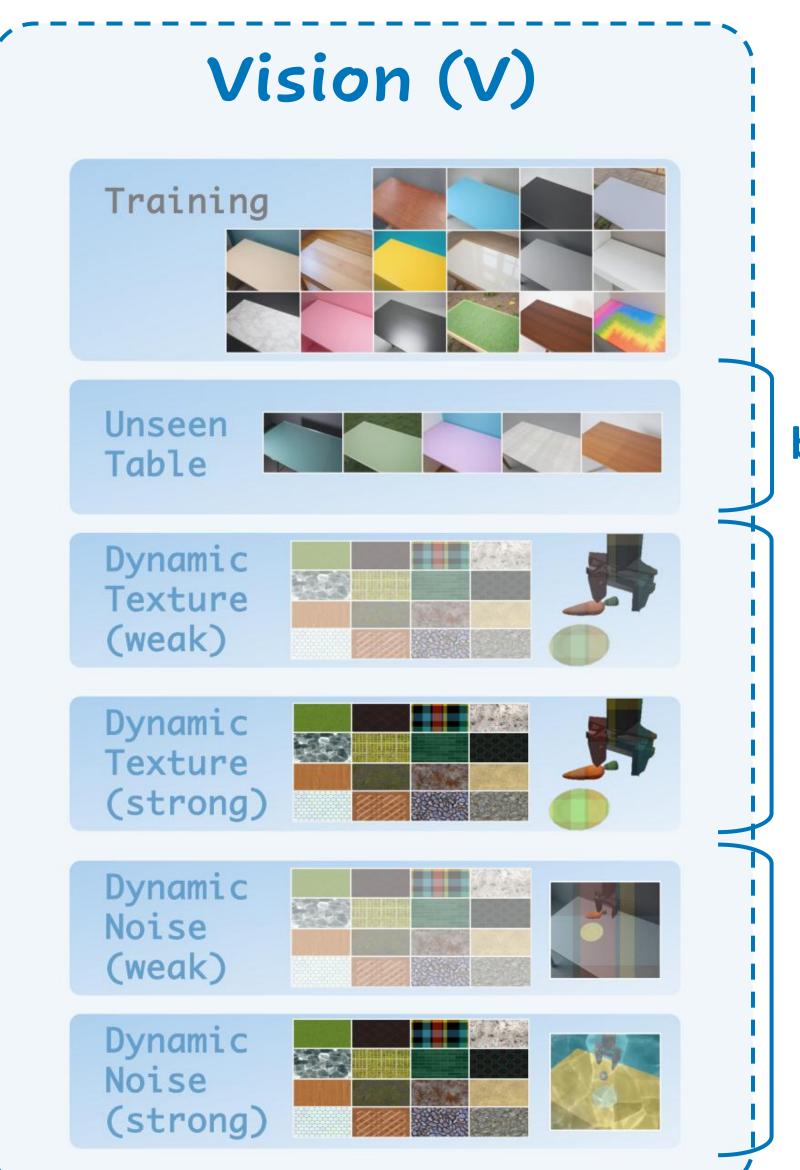
arXiv:2506.15799



Task	π_0	DSRL
Turn on toaster	5/20	18/20
Put spoon on plate	15/20	$\mathbf{19/20}$

But which facets of VLA stand to gain the most from RL?

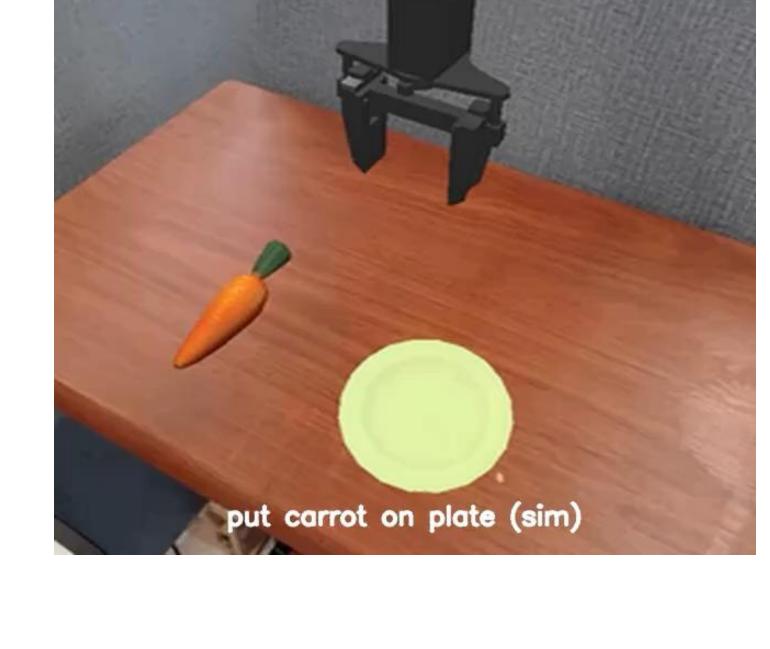
Facets of VLA generalization - Vision



background

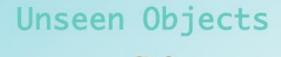
foreground

full scene

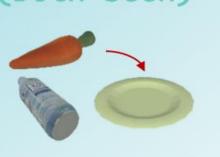


Facets of VLA generalization - Semantics

Semantics (L)

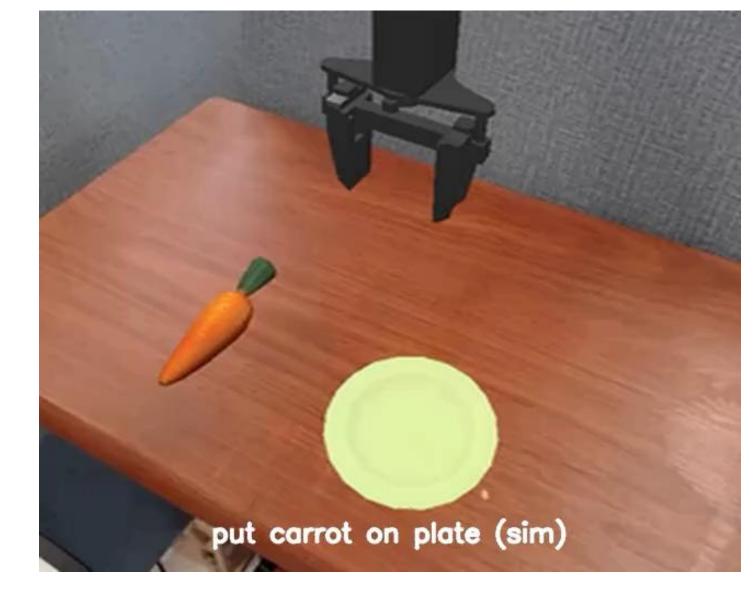


Multi-Object (both seen)



Multi-Object (both unseen)

one object, one receptacle

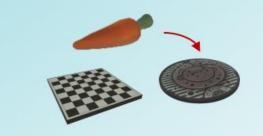


Unseen Receptacles

Unseen Instruction Phrasings

"The \$0\$ should be placed on the \$R\$."

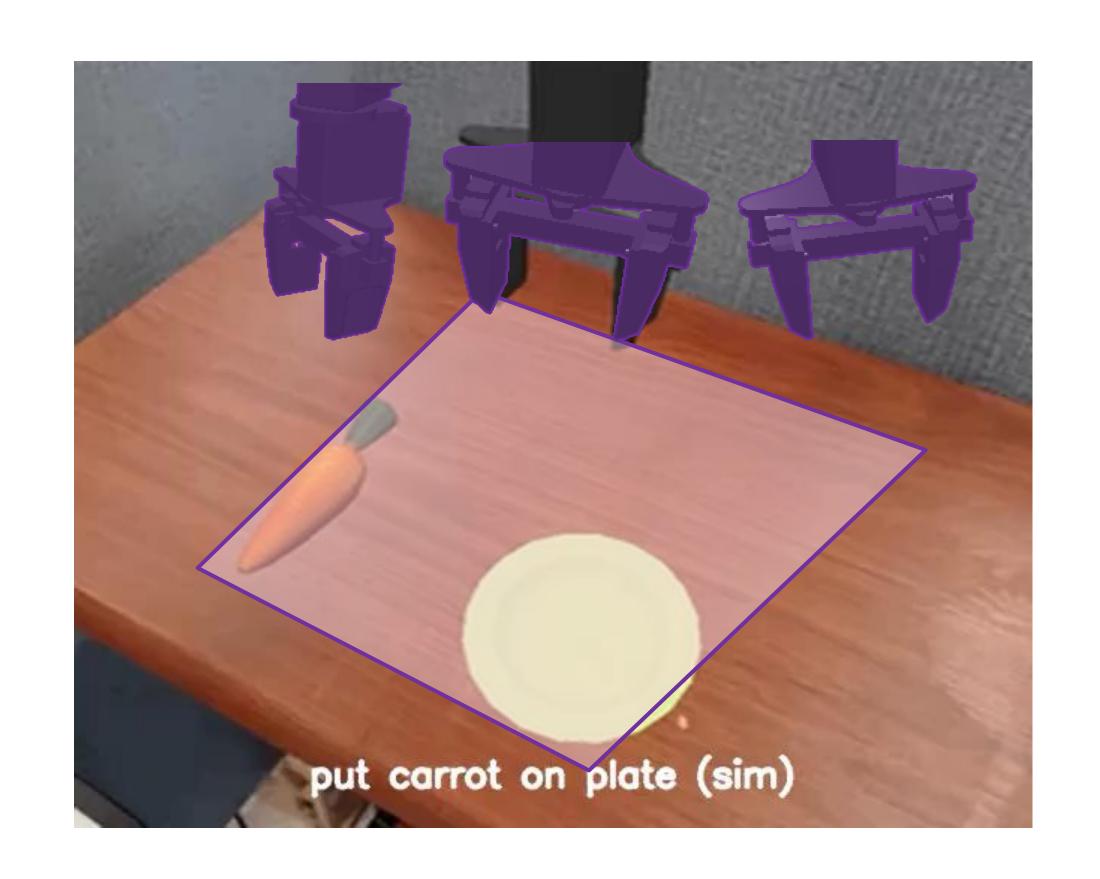
Multi-Receptacle (both unseen)

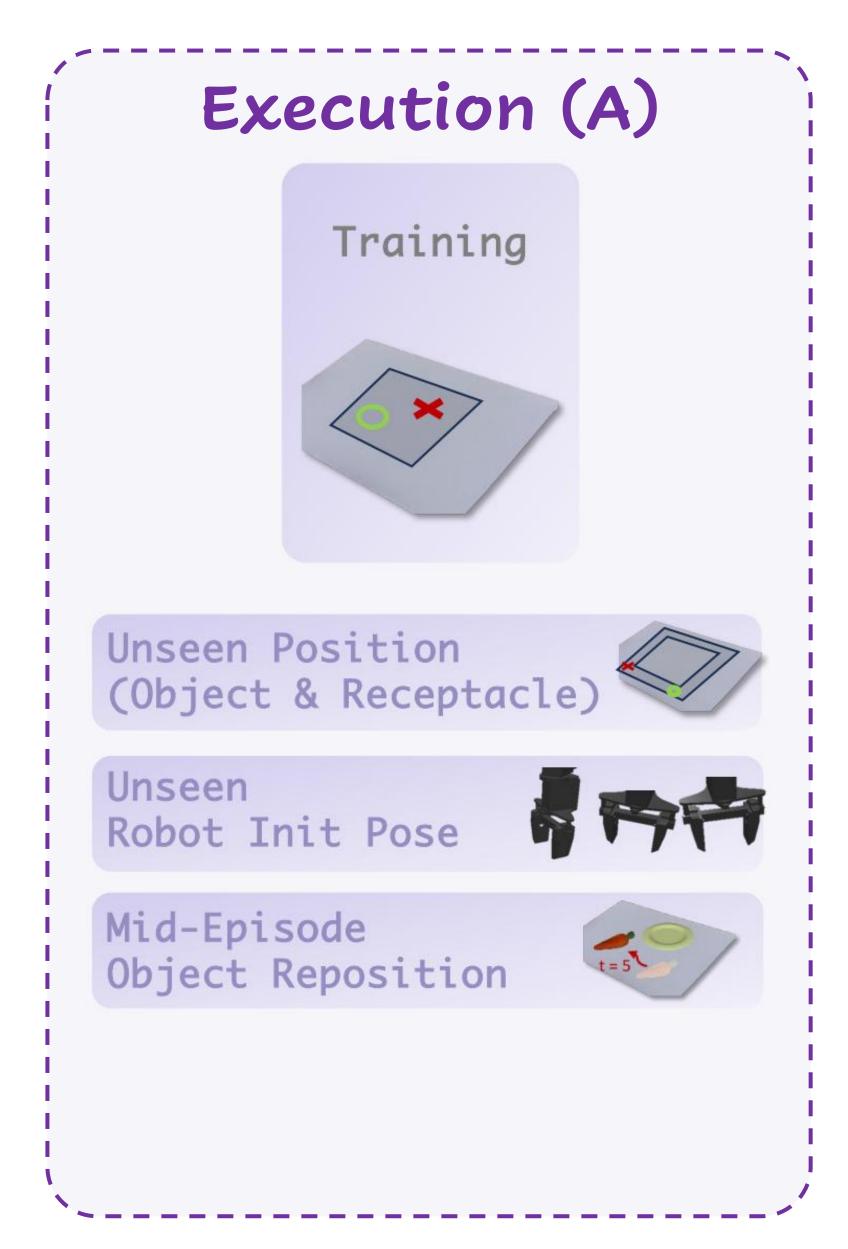


one object, two receptacles

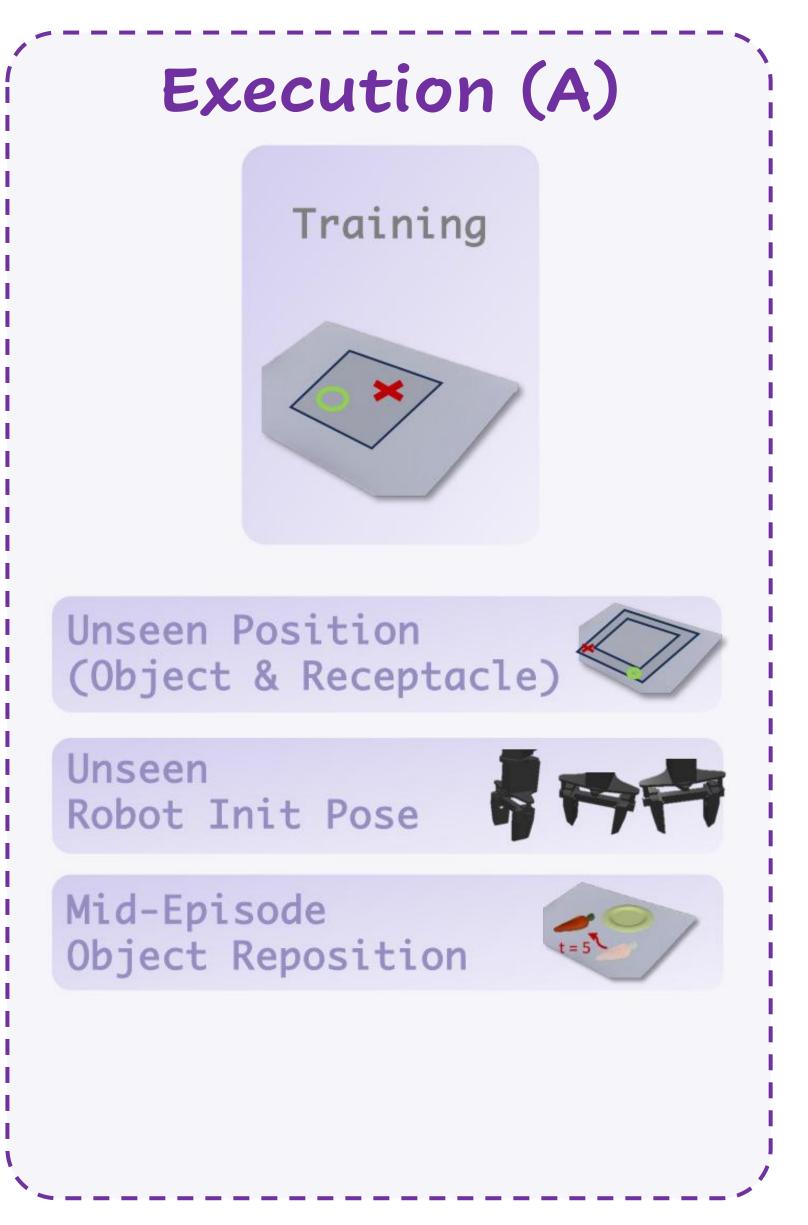
two objects, one receptacle

Facets of VLA generalization - Execution

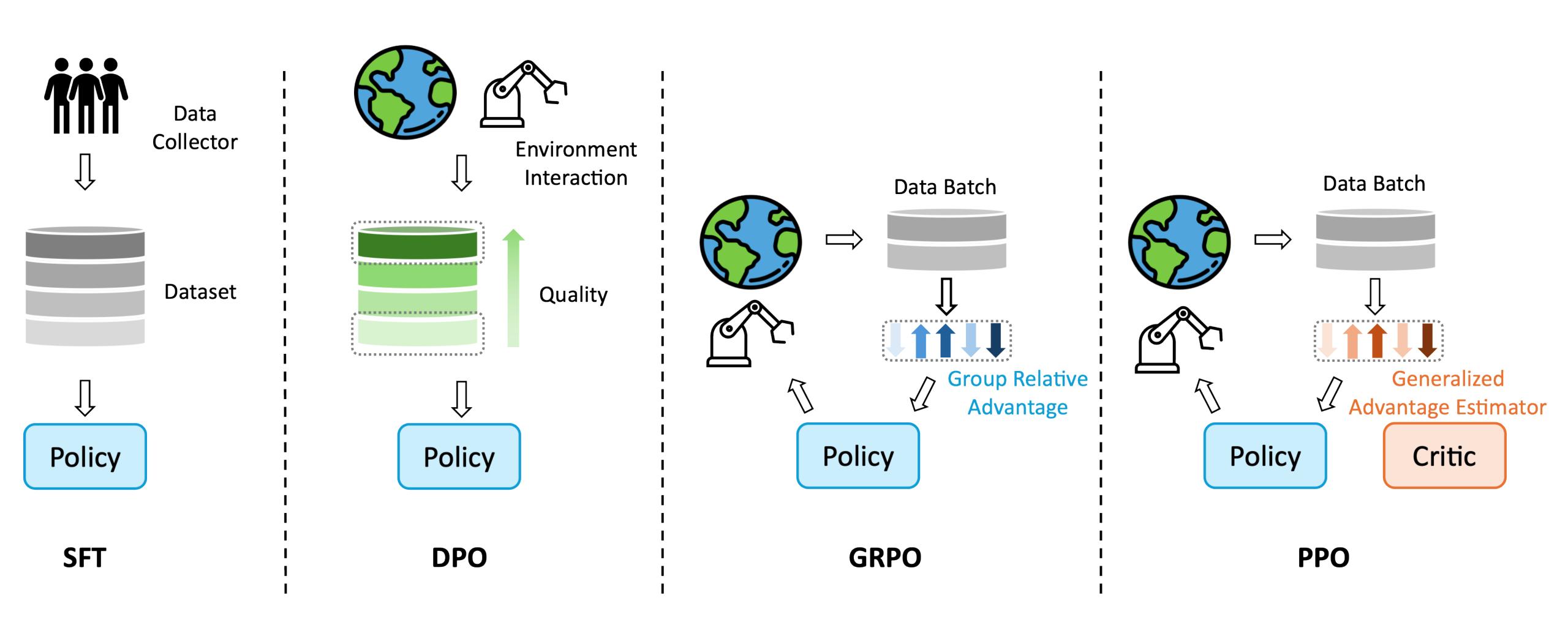




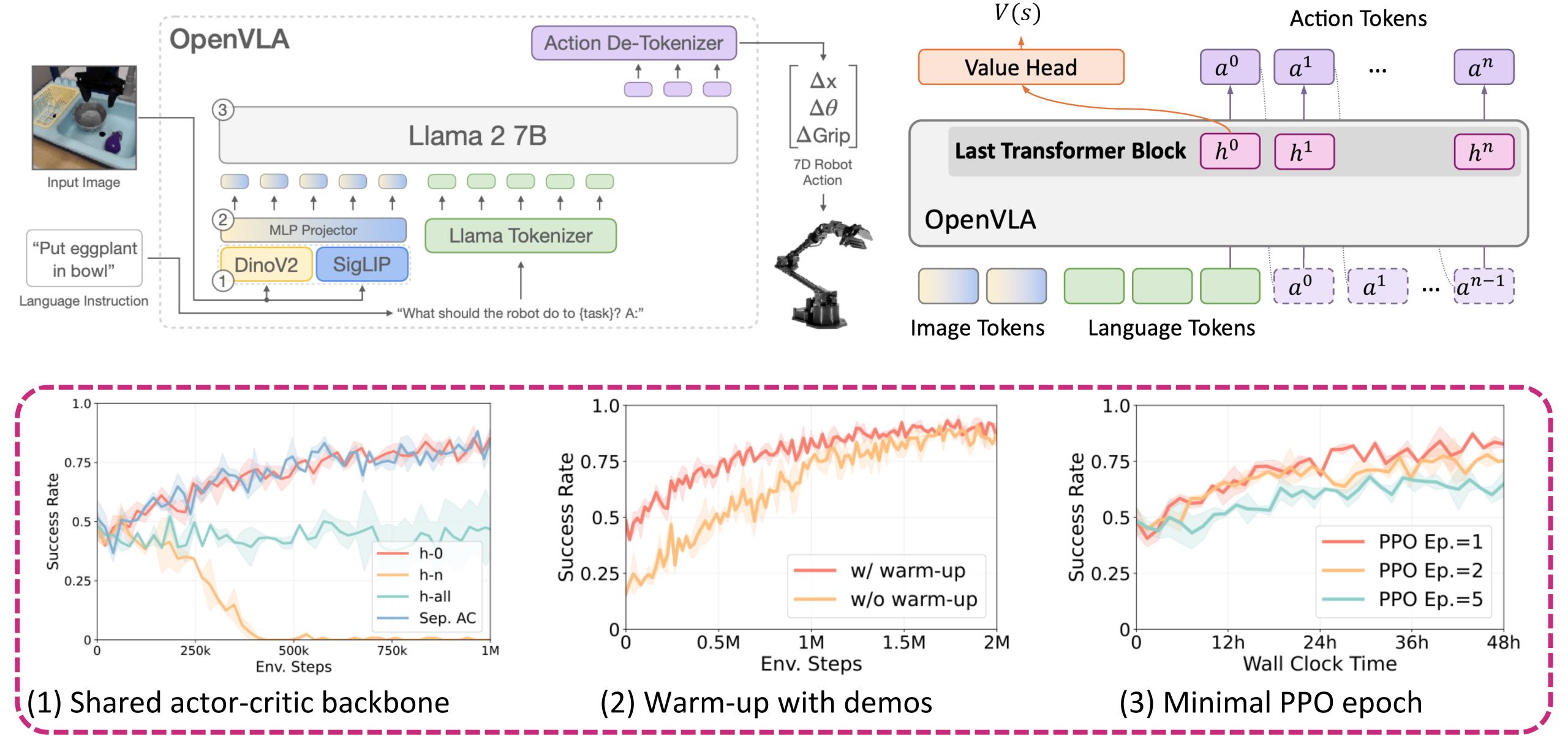
Overview of our study



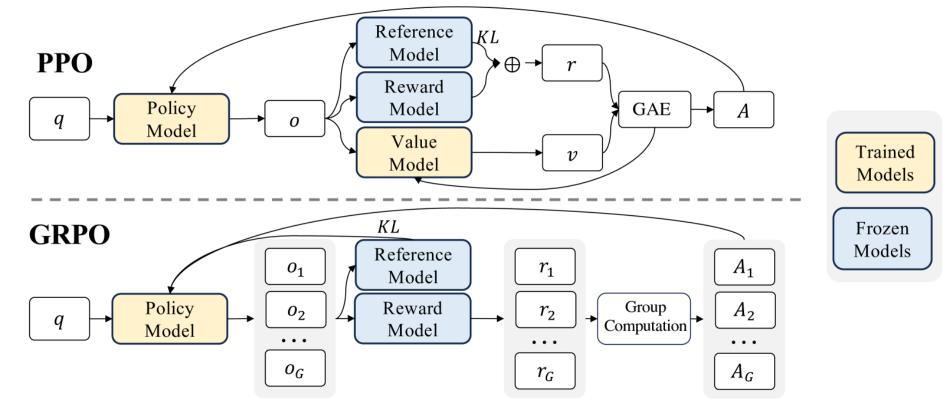
SFT/RL finetuning for VLA

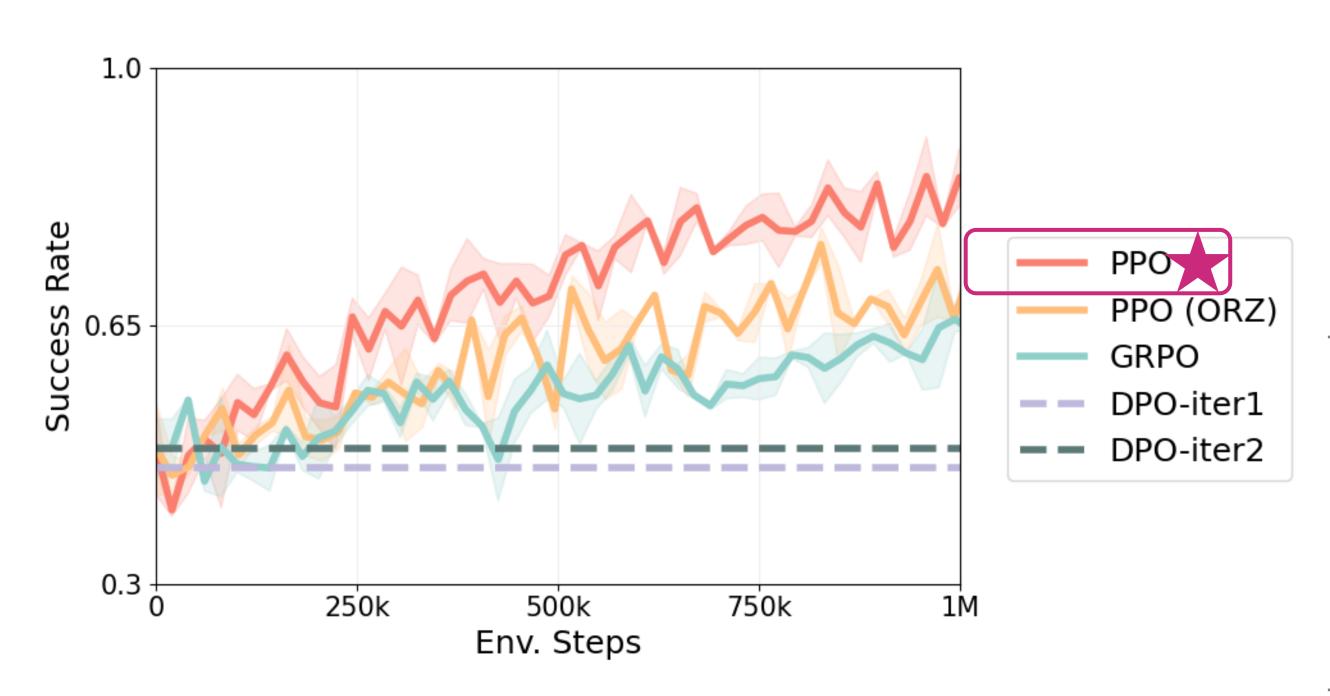


Effective RL fine-tuning



PPO works best





PPO (ORZ): disabling GAE ($\gamma = 1, \lambda = 1$)

GRPO:

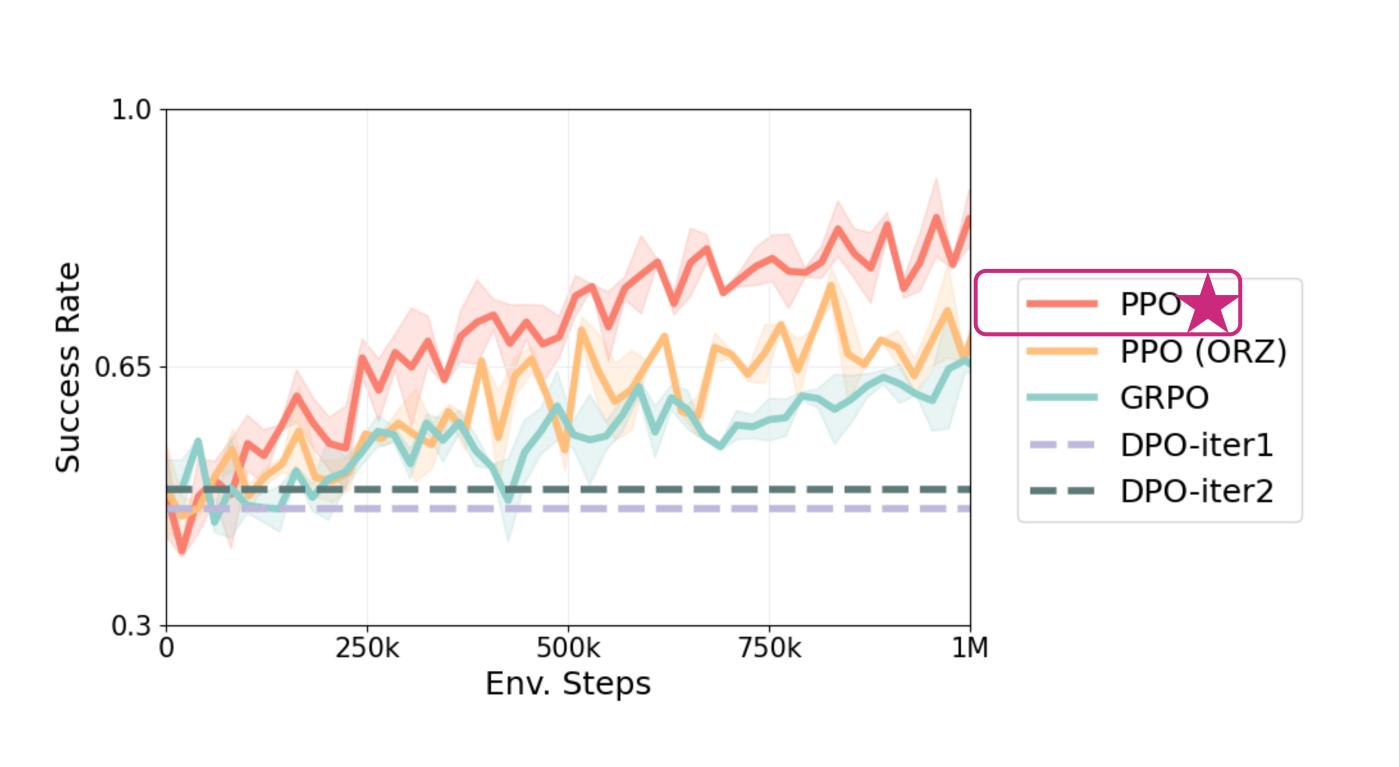
$$\hat{A}_t^i = rac{r^i - ext{mean}(\mathbf{r})}{ ext{std}(\mathbf{r})}$$
 $\mathbf{r} = \{r^1, r^2, \cdots, r^G\}$

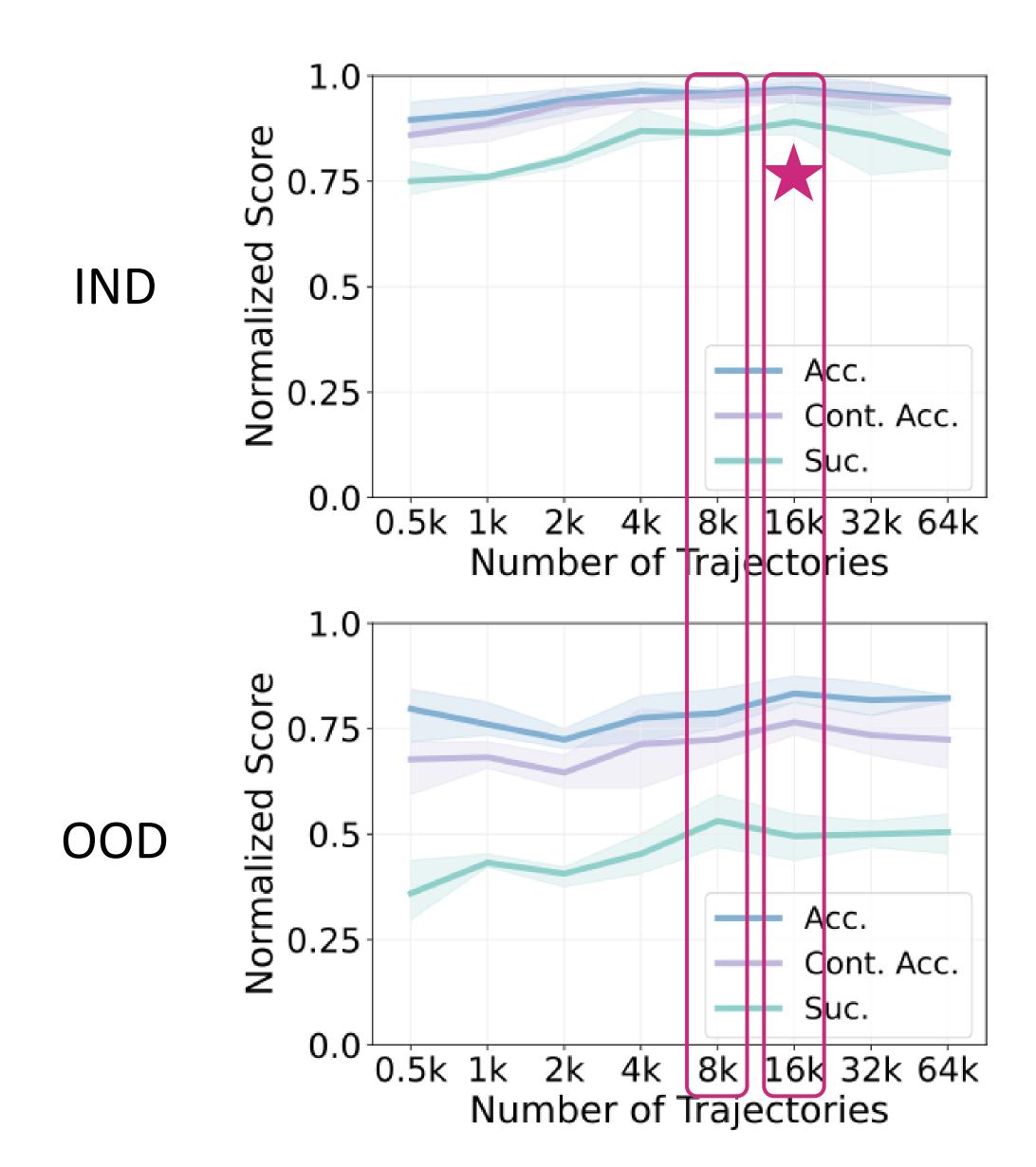
DPO:

$$\zeta_w, \zeta_l \sim \left\{ s_0^i = \boldsymbol{s_0} \right\}$$

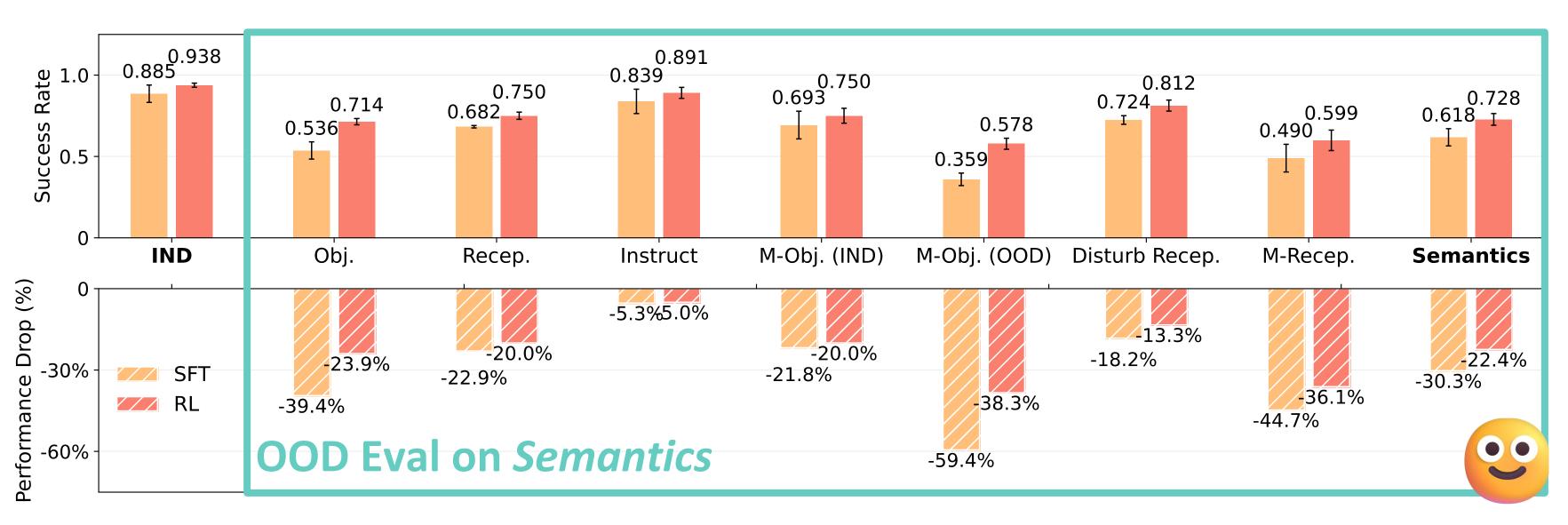
$$\mathcal{L}_{\text{TPO}} = -\mathbb{E}_{(\zeta_w, \zeta_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \left(\log \frac{\pi_{\theta}(\zeta_w)}{\pi_{\text{ref}}(\zeta_w)} - \log \frac{\pi_{\theta}(\zeta_l)}{\pi_{\text{ref}}(\zeta_l)} \right) \right) \right]$$

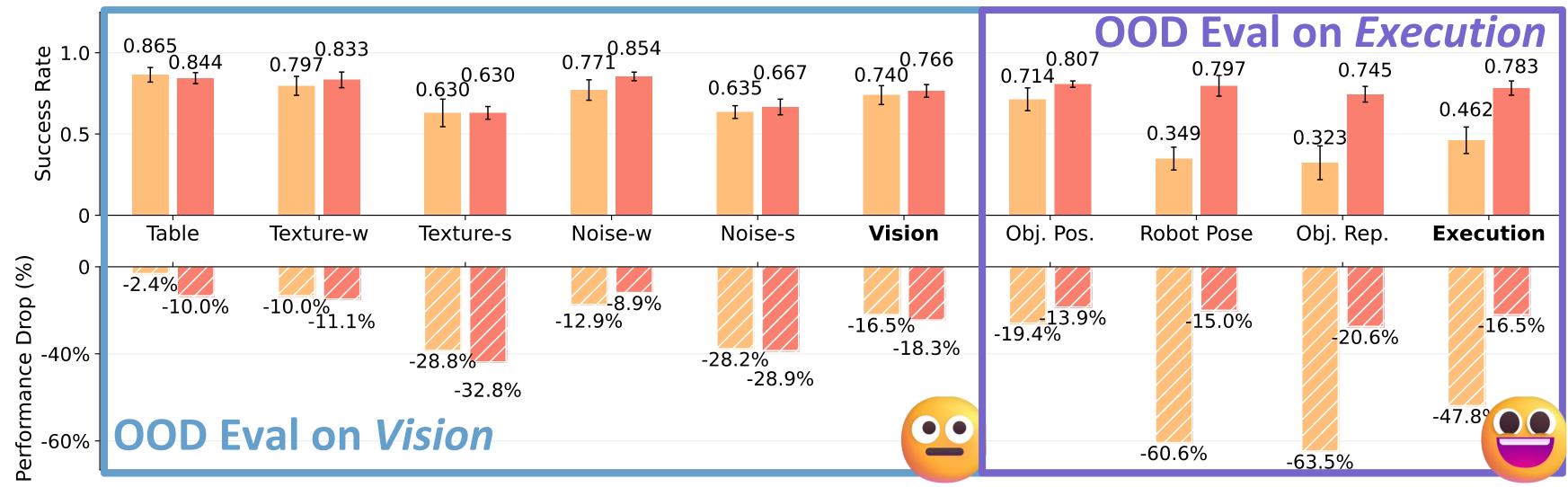
PPO works best, SFT scales with data





RL vs SFT: does RL always win?





For VLA generalization,

Vision: SFT and RL perform comparably

Semantics: RL improves moderately

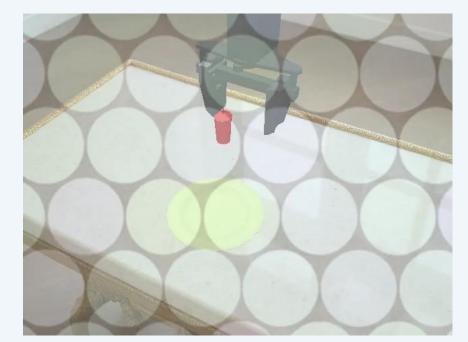
Execution: RL enhances substantially

RL vs SFT: does RL always win?

Vision (V)

Noice Strong

SFT Fail



RL Fail

Semantics (L)

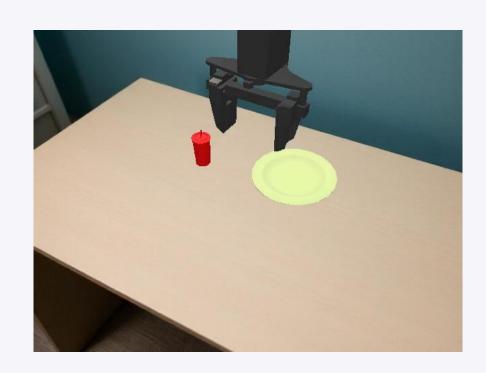
New Object

SFT Fail

RL Success

Execution (A)

Mid Episode Reposition

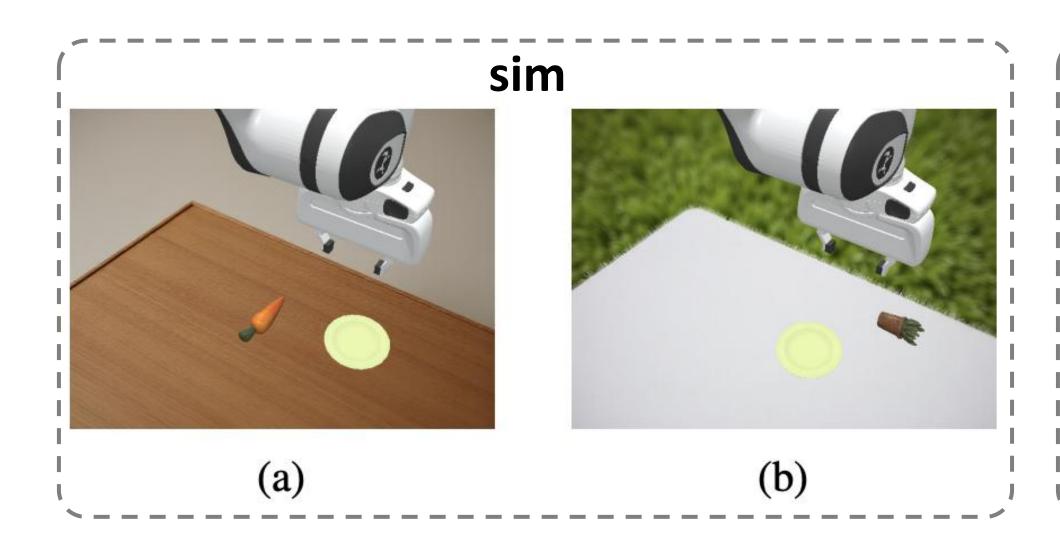


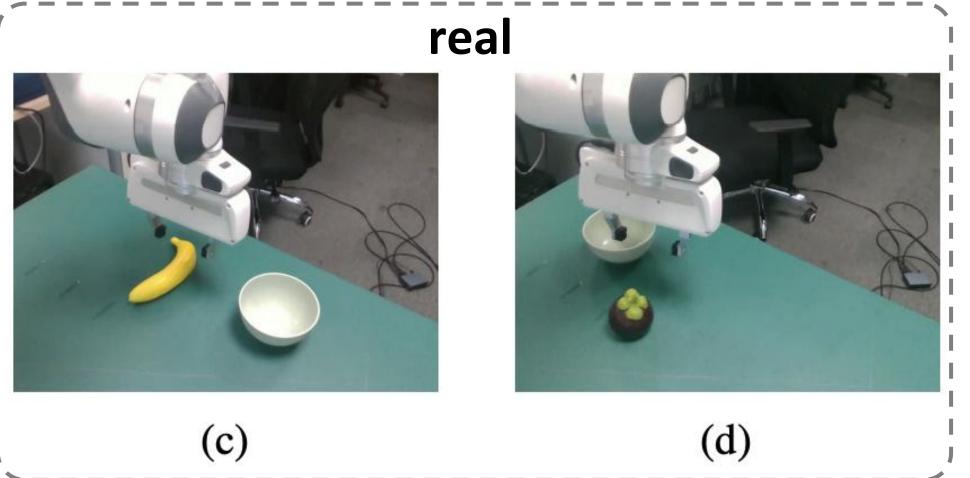
SFT Fail

RL Success

RL vs SFT: what about real-world deployment?

RL can also help zero-shot sim-to-real generalization



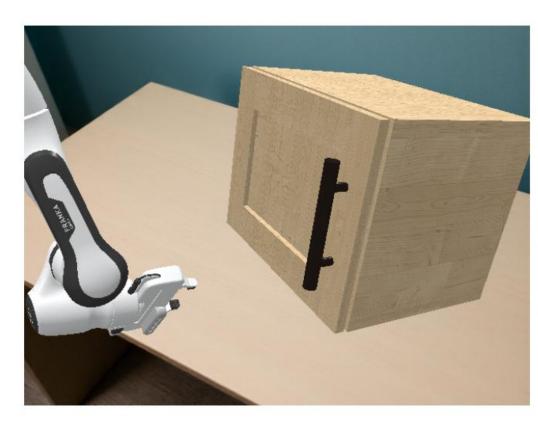


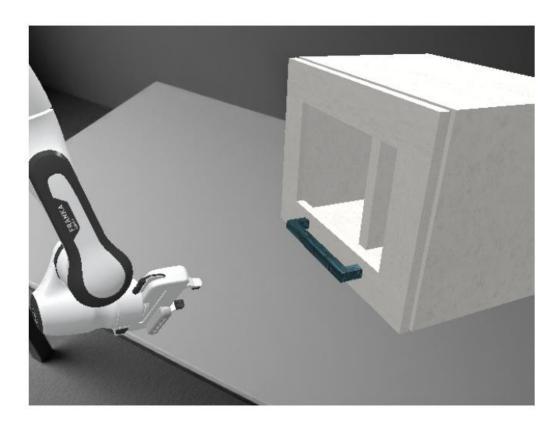
	SFT	RL
Grasp Success Rate	0.10	0.43
Pick-and-Place Success Rate	0.00	0.27

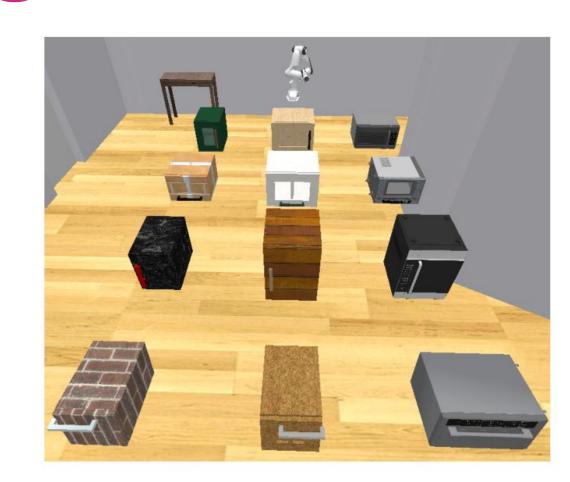
SFT

RL vs SFT: what about more challenging tasks?

Open articulated objects





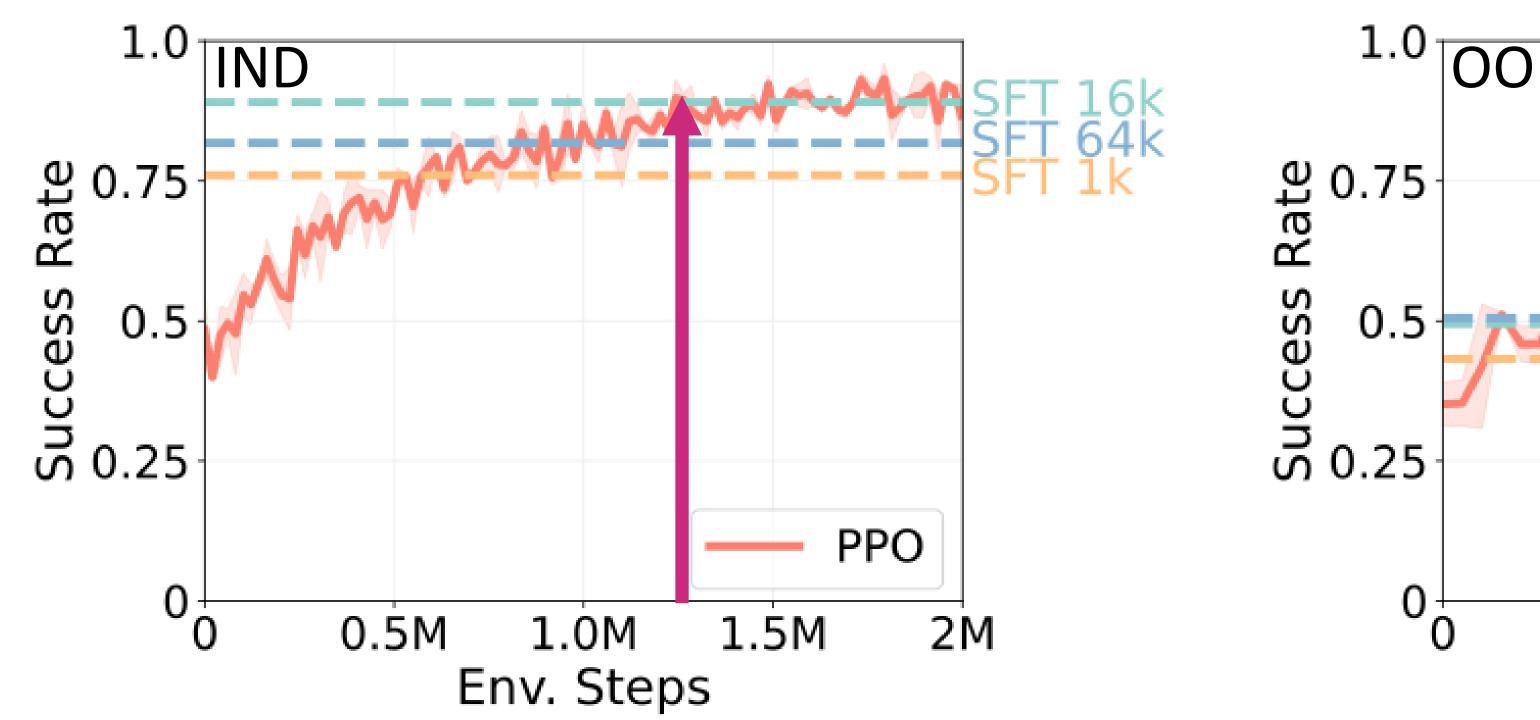


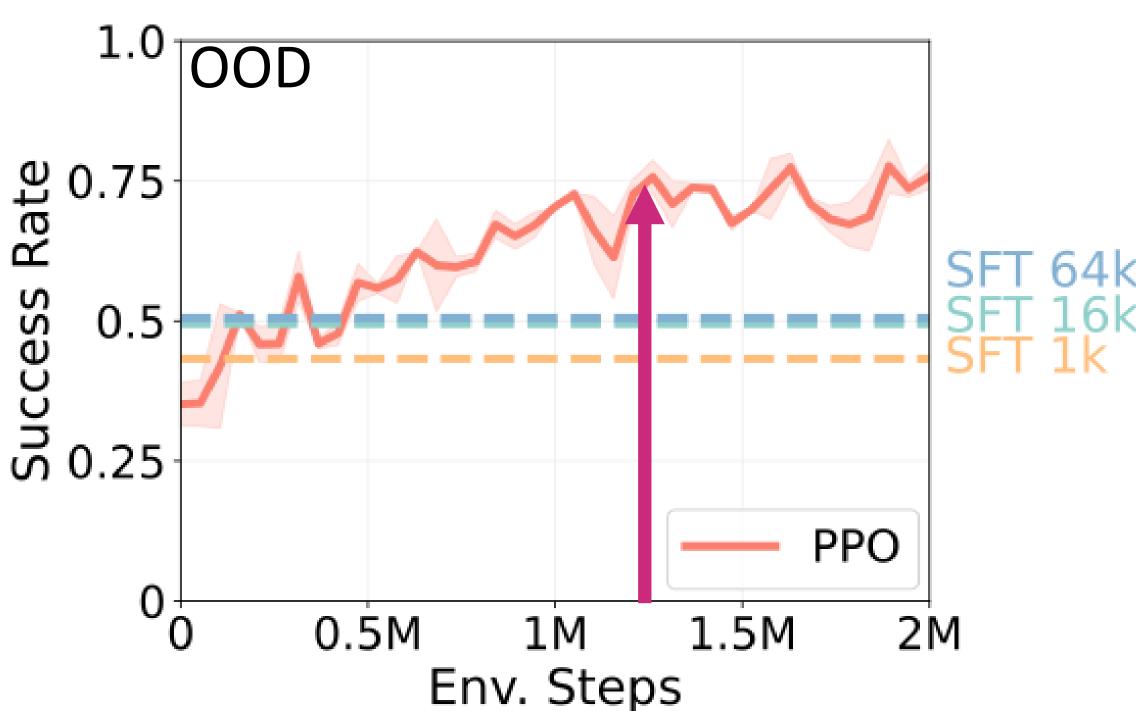
(a) (b)

	SFT		RL	
	Success Rate	Degradation Ratio	Success Rate	Degradation Ratio
IND	0.745 (.015)	_	0.724 (.045)	
New Backgrounds Dynamic Noise Vision Avg.	0.766 (.071)	+0.028	0.734 (.058)	+0.014
	0.526 (.015)	-0.294	0.448 (.037)	-0.381
	0.646 (.043)	-0.130	0.591 (.048)	-0.184
Articulated Obj. Re-phrased Inst. Semantic Avg.	0.042 (.015)	-0.944	0.151 (.019)	-0.791
	0.703 (.077)	-0.056	0.620 (.041)	-0.144
	0.373 (.046)	-0.500	0.386 (.030)	-0.468
Obj. Pose EE Pose Execution Avg.	0.448 (.032)	-0.399	0.484 (.089)	-0.331
	0.151 (.027)	-0.797	0.312 (.013)	-0.568
	0.300 (.030)	-0.600	0.398 (.051)	-0.450

Why can RL work better?

Hypothesis 1: Does it benefit from using more data?

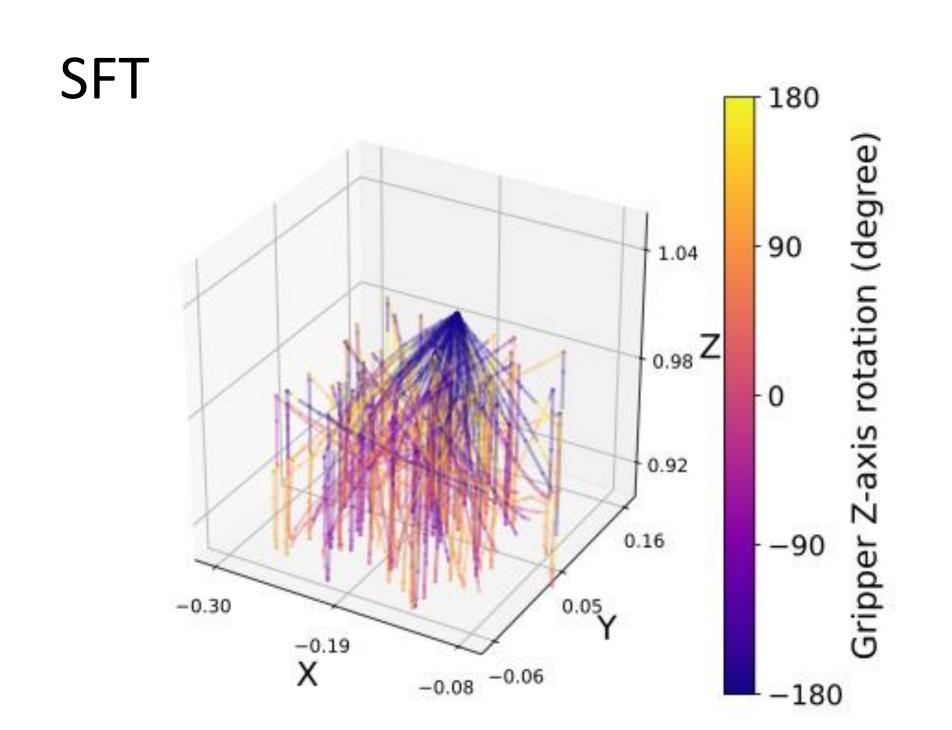


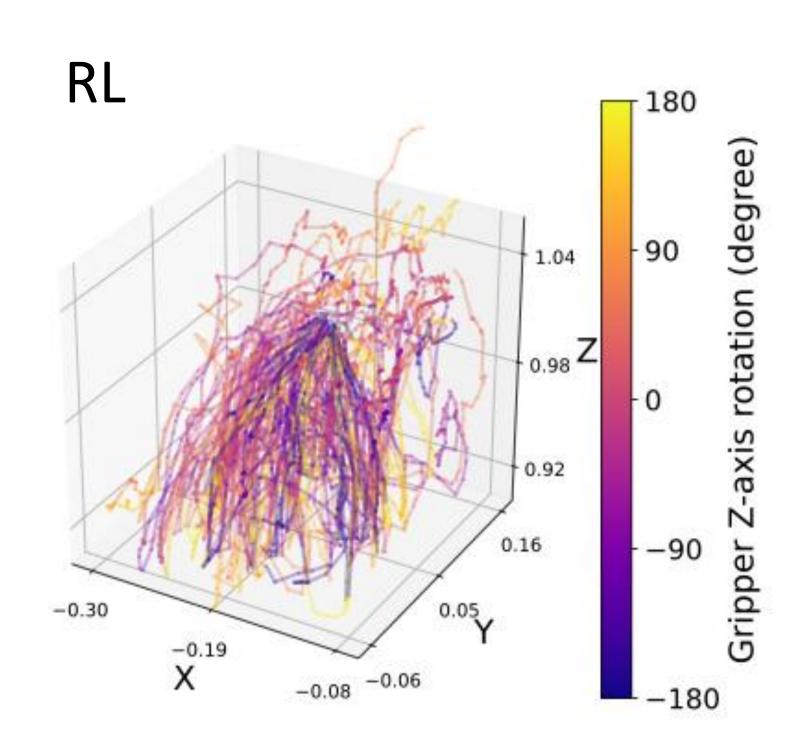


64k trajectory ~ 1.26M transitions

Why can RL work better?

Hypothesis 2: Does it benefit from diverse exploration?





RL trajectories span a broader workspace and a richer range of end-effector orientations

Thanks for your time!

Project: https://rlvla.github.io

Code: https://github.com/gen-robot/RL4VLA

