

Weiyi Wang, Junwei Deng, Yuzheng Hu, Shiyuan Zhang, Xirui Jiang, Runting Zhang, Han Zhao, Jiaqi W. Ma

NeurlPS 2025

Background: Hyperparameters (HPs) in Data Attribution

Influence Function (IF) (with gradient projection): Base of popular attributors

$$\underbrace{\tau_{\mathrm{IF},\lambda,P}(z',z_i)}_{\text{Influence of train data }z_i} = \underbrace{-\left[\nabla_{\theta}f_{z'}\right]_{P}}_{\text{How much will target of }z'} \underbrace{\left(\left[H_{S}\right]_{P} + \lambda\ I\right)^{-1}\left[\nabla_{\theta}L_{z_i}\right]_{P}}_{\text{... parameters are retrained after removing }z_i?}$$

- attributors like TRAK, LoGra, ... build upon IF
- λ : regularization strength
- \tilde{p} : projection dimension; $[\cdot]_P$: projection with $P \in \mathbb{R}^{p \times \tilde{p}}$
- other hyperparameters...?

f: target (e.g. logit)

 H_S : Hessian of loss of model trained on S

L: loss

Evaluation: How good is the attributor?

- Linear Datamodeling Score (LDS): Generic, task-independent
- Downstream tasks: Data selection, Fact tracing, Adversarial attack, ...

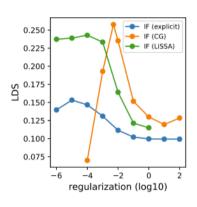
Motivations

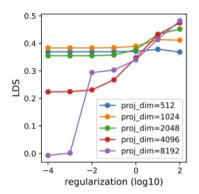
- 1. How do hyperparameters affect data attribution performance?
- A Large-Scale Study of Hyperparameter Sensitivity in Data Attribution
 [Section 3]

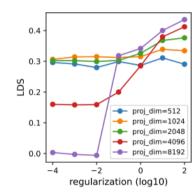
- 2. Can we accelerate hyperparameter selection (faster than brute-force search) without sacrificing performance?
- A Case Study on Regularization Term in Influence Function
 [Section 4]

A Large-Scale Study of HP Sensitivity

Part of the experimental results:



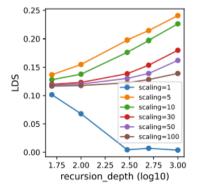


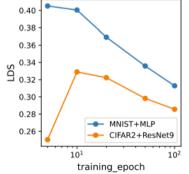


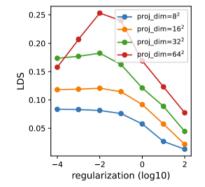
(a) MNIST+MLP. Attributor: IF⁵. (b) HP: regularization.



MNIST+MLP. Attributor: (c) CIFAR-2+ResNet-9. Attributor: TRAK. HP: projection-dimension, regularization.







(LiSSA). HP: scaling, recursion- MLP. Attributor: depth.

(d) MNIST+MLP. Attributor: IF (e) CIFAR-2+ResNet-9 & MNIST+ (f) WikiText2+GPT2. Attributor: training-epoch.

TRAK. HP: LoGra. HP: projection-dimension, regularization.

Key Takeaways

- 1. Most attributors are sensitive to certain HPs
 - HPs in data attribution are critical but largely overlooked
- 2. Impact of HPs can be "entangled"
 - Counterintuitive: increase \tilde{p} along \Rightarrow performance could \downarrow
 - Increase \tilde{p} + tune $\lambda \Rightarrow$ monotonic performance \uparrow
- 3. Implicit HPs (e.g. "training epoch") are important as well
 - Training epoch: #epochs to train the θ used in τ
 - Could greatly affect performance

Accelerating HPs Selection

Brute-force HP selection procedure

Attributor \rightarrow Downstream tasks (e.g. data selection)

• Each (attributor, hyperparameters, task) ⇒ Re-evaluate (slow)

LDS-based HP selection procedure

Attributor \rightarrow LDS \rightarrow Downstream tasks

- Good LDS score ⇒ likely good downstream performance
- Each (attributor, hyperparameters) ⇒ LDS
- Issue: LDS itself is slow! It requires retraining many models on sampled subsets of ${\cal S}$

Can we select HPs without retraining in LDS?

A Case Study on Regularization Term in Influence Function

Can we select HPs without retraining in LDS?

Problem: Find the maximizer λ of LDS without retraining.

- Issue: LDS is (1)non-differentiable, and (2)dependent of sampled subsets.
- "Population Pearson LDS"

A sufficient condition (Informal, Under certain assumptions)

For z' and λ , there are two numbers $\xi_{z',\lambda}$ and $\omega_{z',\lambda}$ such that:

- 1. Both lie in [0, 1];
- 2. Computing $\xi_{z',\lambda}$ doesn't require retraining models;
- 3. If $\xi_{z',\lambda} < \omega_{z',\lambda}$, then Population Pearson LDS of z' increases with λ .

A Case Study on Regularization Term in Influence Function

Attributor \to Surrogate indicator $\xi_{z',\lambda} \to$ Downstream tasks

- Each (attributor, hyperparameters) $\Rightarrow \xi$
- No retraining needed!

Algorithm 1 Selecting λ with the surrogate indicator.

Input: A candidate set C of λ , a subset $T \subset Z$ of test examples. **Output:** A selected $\hat{\lambda}$.

1: for $\lambda \in \mathcal{C}$ do

2: Compute $\xi_{z',\lambda}$ for all $z' \in T$;

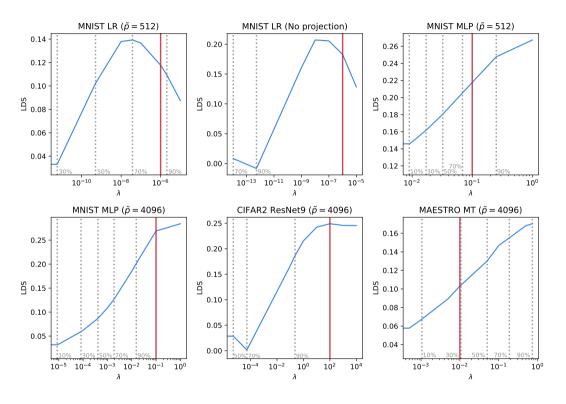
3: $\bar{\xi}_{T,\lambda} \leftarrow \frac{1}{|T|} \sum_{z' \in T} \xi_{z',\lambda};$

4: end for

5: $\hat{\lambda} \leftarrow \operatorname{arg\,min}_{\lambda \in \mathcal{C}} |\bar{\xi}_{T,\lambda} - 0.5|;$

0.5 intuitively marks quick increase in ξ \Rightarrow Population Pearson LDS approaches to stationary point

A Case Study on Regularization Term in Influence Function



Removal rates	10%	30%	50%
Full	$88.63\% \pm 0.03\%$	$88.63\% \pm 0.03\%$	$88.63\% \pm 0.03\%$
Random	$88.52\% \pm 0.03\%$	$88.06\% \pm 0.05\%$	$87.60\% \pm 0.06\%$
IFFIM Default	$88.44\% \pm 0.05\%$	$87.77\% \pm 0.08\%$	$87.58\% \pm 0.10\%$
IFFIM Selected	$87.66\% \pm 0.04\%$	$84.50\% \pm 0.04\%$	$81.53\% \pm 0.06\%$
TRAK Default	$88.53\% \pm 0.06\%$	$87.92\% \pm 0.11\%$	$86.88\% \pm 0.29\%$
TRAK Selected	$87.30\% \pm 0.04\%$	$\mathbf{83.84\%} \pm \mathbf{0.05\%}$	$80.12\% \pm 0.08\%$

- Left: LDS;
 red ⇒ our algo.
 blue ⇒ LDS vs. λ
- Top: Data selection;
 "Selected" ⇒ our algo.

It is possible to select λ properly without any retraining

Thank you!