

# EfficientNav: Towards On-Device Object-Goal Navigation with Navigation Map Caching and Retrieval

Zebin Yang, Sunjian Zheng, Tong Xie, Tianshi Xu, Bo Yu\*, Fan Wang, Jie Tang, Shaoshan Liu, Meng Li\*

\* Corresponding author. Emails: boyu@cuhk.edu.cn, meng.li@pku.edu.cn







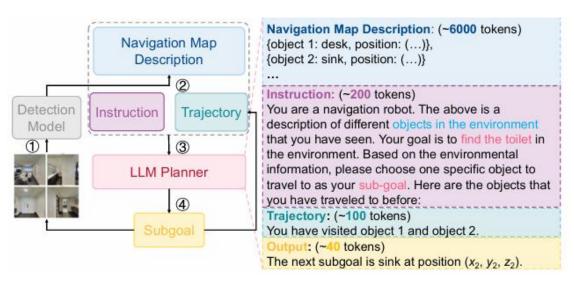






## **Background**

- Object-goal navigation tasks an agent with navigating to locations of specific objects in an unseen environment
- Large language models with memory have been introduced for long-term planning in a zero-shot manner
- ObjNav works in a step-by-step manner; in each step, the planner chooses a sub-goal for further exploration
- The information of explored areas and visited objects (navigation map), the instruction to find the final goal,
  and the history trajectory information will be given to the LLM planner





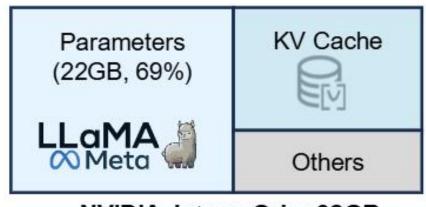


## **Background**

- For better accuracy, existing works use giant LLMs (GPT-4, GPT-4V), which must be deployed on online servers
- These cloud offloading methods suffer from high latency, privacy concerns, and a heavy reliance on WiFi
- To overcome this, we optimize the planning process and deploy the whole system on local devices
- However, deploying the ObjNav system on local devices faces challenges because of tight memory constraints

Table 1: Comparison with prior methods.

| Method               | Zero-<br>shot | LLM    | On-device<br>Inference | Memory<br>Augmented |
|----------------------|---------------|--------|------------------------|---------------------|
| ViKiNG 51            | Х             | -      | <b>✓</b>               | <b>/</b>            |
| NaVid 69             | X             | Vicuna | <b>✓</b>               | ×                   |
| Skip-SCAR [36]       | X             | =      | /                      | <b>✓</b>            |
| Pixel Navigation [7] | /             | GPT-4  | ×                      | ×                   |
| InstructNav 37       | <b>✓</b>      | GPT-4V | X                      | ✓                   |
| MapGPT [10]          | /             | GPT-4  | X                      | ✓                   |
| LFG [50]             | <b>✓</b>      | GPT-4  | ×                      | ✓                   |
| EfficientNav (Ours)  | /             | LLaMA  | ✓                      | ✓                   |

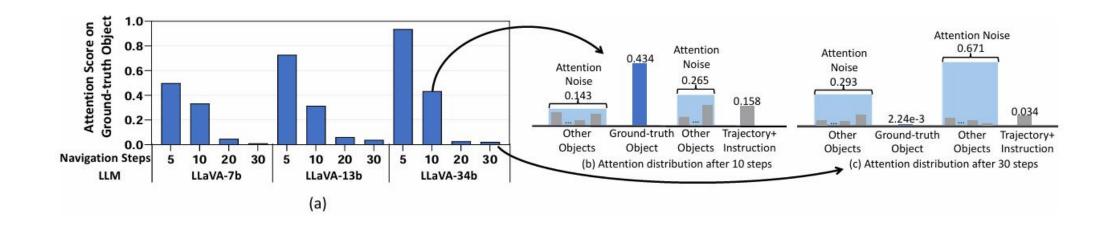


**NVIDIA Jetson Orin: 32GB** 



## **Challenge 1: Model Capacity**

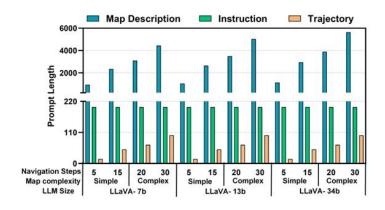
- The tight memory constraint forces to use smaller LLMs (e.g., LLaMA-11b), which have poorer model capacity
- In each step, newly detected objects will be added to the navigation map, and environmental information will increase with the exploration process, among which includes redundant information
- For smaller LLMs, the redundant information in the map will negatively impact the planning performance

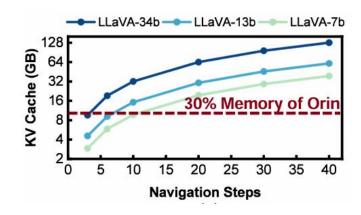


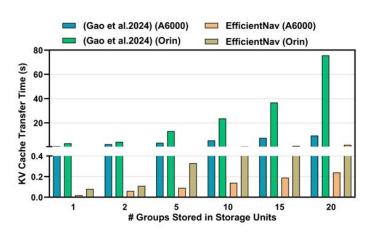


## **Challenge 2: Memory Capacity**

- Environmental information increasing with the exploration process will introduce long prompt, which will introduce long real-time latency because of high prefilling computation
- Tight memory constraints of local devices limit the saving of the KV cache of the navigation map description
- Traditional methods offload KV cache to CPU, while this introduces large memory communication overhead



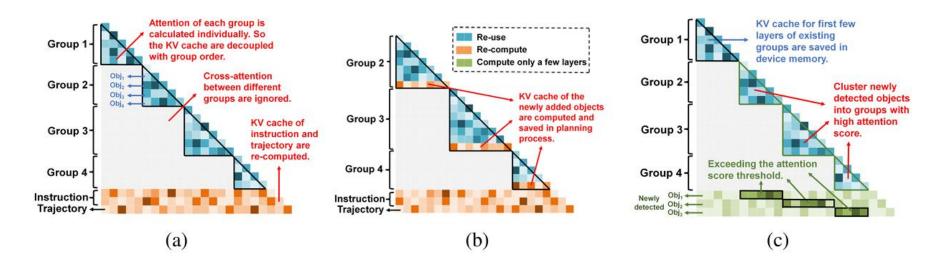






#### **Method**

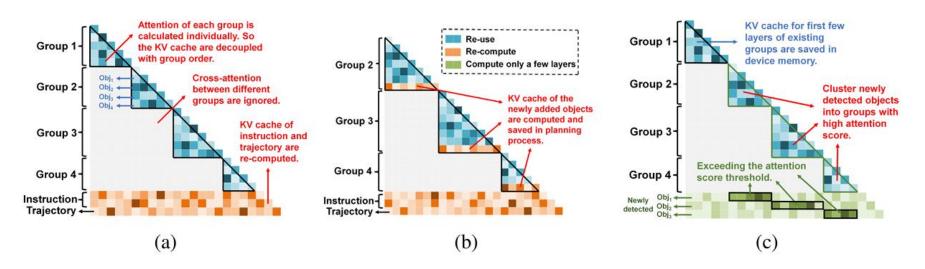
- To meet the memory constraints and improve model performance, we design a novel navigation map caching and retrieval method, which can remove redundant information and reduce latency
- However, with different information retrieved, the prefix of prompt changes, making the saved KV unusable
- We propose discrete memory caching to group memory and calculate the KV cache of each group individually
- This can decouple the KV cache calculation and memory order, thus enabling KV reuse





#### **Method**

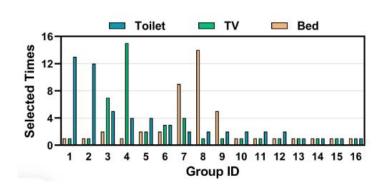
- However, calculating KV of each group individually will cause ignorance of cross-attention between objects
- To avoid performance drop caused by this ignorance, we cluster object information by object relevance
- We propose attention-based memory clustering, using LLM attention to save related objects into same groups
- If the average attention between a newly detected object and an existing group exceeds a specific threshold, we cluster this object into the group

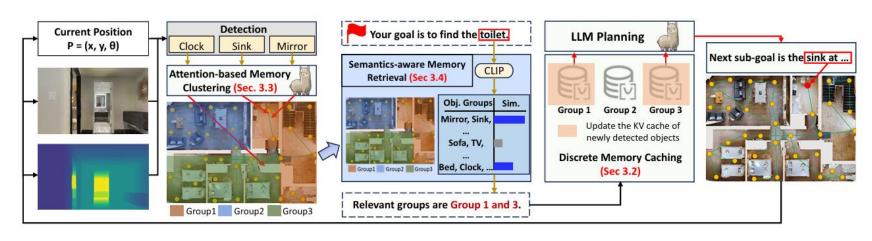




#### **Method**

- To remove redundant information and improve performance, we propose semantics-aware memory retrieval
- We observe that with different final goals, the relevance of different groups varies a lot
- In memory retrieval, considering retrieval efficiency and semantic matching, we use a pre-trained semantic model CLIP to calculate the relevant probability between the final goal and groups
- To adapt to devices with different memory budgets, we formulate the group selection as a knapsack problem







### **Experiments**

- EfficientNav achieves 11.1% improvement in success rate on HM3D benchmark over GPT-4-based baselines
- EfficientNav demonstrates 6.7× real-time latency and 4.7× end-to-end latency reduction over GPT-4 planner

Table 2: SR and SPL comparison.

| Method                 | Zero-shot | LLM           | SR   | SPL  |  |
|------------------------|-----------|---------------|------|------|--|
| DD-PPO 59              | X         | -             | 27.9 | 14.2 |  |
| SemExp 9               | X         | -             | 37.9 | 18.8 |  |
| Habitat-web 47         | X         | _             | 41.5 | 16.0 |  |
| OVRL 63                | X         | -             | 62.0 | 26.8 |  |
| ZSON 39                | ✓         | -             | 25.5 | 12.6 |  |
| PixelNav 7             | ✓         | GPT-4         | 37.9 | 20.5 |  |
| ESC [73]               | ✓         | -             | 39.2 | 22.3 |  |
| VoroNav 60             | ✓         | GPT-3.5       | 42.0 | 26.0 |  |
| LLaVA Planner-34b [10] | ✓         | LLaVA-34b     | 42.7 | 21.0 |  |
| L3MVN 67               | ✓         | RoBERTa-large | 50.4 | 23.1 |  |
| InstructNav 37         | ✓         | GPT-4V        | 58.0 | 20.9 |  |
| LFG [50]               | ✓         | GPT-4         | 68.9 | 36.0 |  |
| EfficientNav-11b       | ✓         | LLaMA3.2-11b  | 74.2 | 39.5 |  |
| EfficientNav-34b       | ✓         | LLaVA-34b     | 80.0 | 41.5 |  |

Table 3: Average latency comparison on A6000.

| Method                  | LLM          | RtL   | E2EL   |  |
|-------------------------|--------------|-------|--------|--|
| GPT-4 Planner [10]      | GPT-4        | 5.80s | 59.34s |  |
| LLaMA Planner-11b [10]  | LLaMA3.2-11b | 3.07s | 46.40s |  |
| vllm [29]               | LLaMA3.2-11b | 2.27s | 39.78s |  |
| EfficientNav-11b (Ours) | LLaMA3.2-11b | 0.35s | 12.70s |  |
| LLaVA Planner-34b [10]  | LLaVA-34b    | 5.63s | 55.32s |  |
| vllm [29]               | LLaVA-34b    | 4.43s | 47.95s |  |
| EfficientNav-34b (Ours) | LLaVA-34b    | 0.87s | 12.51s |  |



#### Conclusion

- To meet the memory constraints and improve model performance, we design a novel **navigation map caching** and retrieval method, which can remove redundant information and reduce real-time latency
- We propose discrete memory caching to decouple KV calculation and memory order, thus enabling KV reuse
- We propose attention-based memory clustering to recover accuracy drop caused by cross-attention ignorance
- We propose semantics-aware memory retrieval to remove redundant information and improve performance
- EfficientNav achieves 11.1% improvement in success rate on HM3D benchmark over GPT-4-based baselines



## Thanks for Listening

EfficientNav: Towards On-Device Object-Goal Navigation with Navigation Map Caching and Retrieval









