Online Robust Locally Differentially Private Learning for Nonparametric Regression

Chenfei Gu¹, Qiangqiang Zhang², Ting Li¹, Jinhan Xie³, Niansheng Tang³

- ¹ School of Statistics and Data Science, Shanghai University of Finance and Economics
- ² Zhongtai Securities Institute for Financial Studies, Shandong University
- ³ Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University

Online Private Nonparametric Regression

Motivation

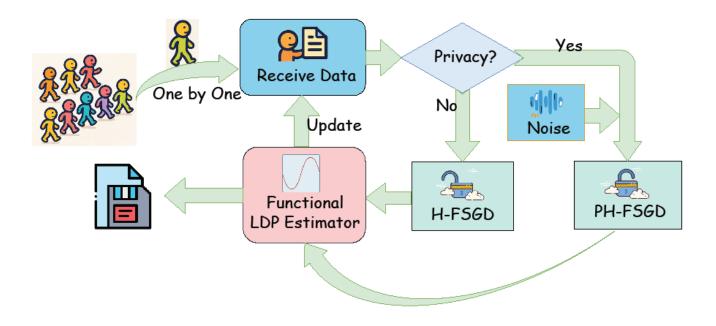
- Streaming data in autonomous systems, wearables, and healthcare require real-time, privacy-preserving models.
- Batch-based nonparametric methods are unsuitable for large-scale or continuous data.
- Outliers and heavy-tailed noise in streaming data hinder model reliability.
- Achieving local differential privacy (LDP) remains difficult beyond centralized or low-dimensional settings.

Table 1: A comparison of recent results on nonparametric regression.

Method	Online	One-pass	Robust	Optimal rate	Privacy
Hall et al. [2013]	×	X	×	?	√
Dieuleveut and Bach [2016]	\checkmark	\checkmark	X	\checkmark	X
Liu et al. [2023]	\checkmark	\checkmark	X	\checkmark	×
Quan and Lin [2024]	\checkmark	\checkmark	X	\checkmark	×
Proposed	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Models and Problem Formulation

Ø Goal



- Develop an online, private, nonparametric regression framework that is robust to heavy-tailed noise and satisfies LDP.
- Study non-asymptotic convergence guarantees and identify optimal step-size schedules.

Models and Problem Formulation

Setup

- The observed data are streaming samples $\{(X_n, Y_n)\}_{n=1}^{\infty}$ generated from the model $Y_n = f^*(X_n) + e_n$.
- The best reproducing kernel Hilbert space (RKHS) approximation:

$$f_{\mathcal{H}} \coloneqq \operatorname{arg} \min_{f \in \overline{\mathcal{H}}} \mathbb{E} \left[\left(Y - f(X) \right)^2 \right].$$

- Our objective is to develop a computationally efficient, single-pass sequence of estimators for $f_{\mathcal{H}}$.
- To address robustness in the presence of heavy-tailed noises and to facilitate private updates, consider the Huber regression in an RKHS:

$$\min_{f \in \mathcal{H}} \mathbb{E} L_{\tau}(Y - f(X)),$$
 where $L_{\tau}(u) = \frac{1}{2}u^{2}\mathbb{I}\{|u| \leq \tau\} + (\tau|u| - \frac{1}{2}\tau^{2})\mathbb{I}\{|u| > \tau\}.$

Methodology

Private Huber Functional SGD

Algorithm 1 PH-FSGD

- 1: **Input:** The streaming data $\{(X_n, Y_n)\}_{n \in \mathbb{N}}$, the initial estimates $\bar{f}(\cdot) = \hat{f}(\cdot) = 0$, the step size sequences $\{\gamma_n\}_{n \in \mathbb{N}}$, the tuning parameter $\tau > 0$, the reproducing kernel K, the bounded parameter B > 0, the privacy parameters $\{\varepsilon_n\}_{n \in \mathbb{N}}$, $\{\delta_n\}_{n \in \mathbb{N}}$, and the function grids $\{t_j\}_{j=1}^J$.
- 2: **for** $n = 1, 2, \dots$ **do**
- 3: Generate the noise $\{\xi_n(t_j)\}_{j=1}^J$ from $N_J(\mathbf{0}, \frac{8\tau^2 B^2 \log(2/\delta_n)}{\varepsilon_n^2} K^{(t)})$, where $K^{(t)}$ is a $J \times J$ matrix with its components $(K^{(t)})_{ij} = K(t_i, t_j)$.
- 4: Calculate the residual: $\operatorname{res}_n = Y_n \langle \hat{f}_{n-1}, K_{X_n} \rangle_{\mathcal{H}}$.
- 5: Perform the noisy gradient descent at each function grid t_j for j = 1, ..., J as follows.
- 6: **if** $|\operatorname{res}_n| \leq \tau$
- 7: then $\hat{f}_n(t_j) = \hat{f}_{n-1}(t_j) + \gamma_n \operatorname{res}_n K(X_n, t_j) + \gamma_n \xi_n(t_j)$.
- 8: **elseif** $\operatorname{res}_n > \tau$
- 9: **then** $\hat{f}_n(t_j) = \hat{f}_{n-1}(t_j) + \gamma_n \tau K(X_n, t_j) + \gamma_n \xi_n(t_j).$
- 10: **else** $\hat{f}_n(t_j) = \hat{f}_{n-1}(t_j) \gamma_n \tau K(X_n, t_j) + \gamma_n \xi_n(t_j).$
- 11: Update f_n at each function grid:

$$\bar{f}_n(t_j) = \frac{n-1}{n}\bar{f}_{n-1}(t_j) + \frac{1}{n}\hat{f}_n(t_j), j = 1,\dots, J.$$

- **12: end for**
- 13: **Output:** The estimators $\{\bar{f}_n(t_j)\}_{j=1}^J$ at each function grid t_j and each iteration n.

Theory

Constant Step Size Scheme

Table 3: Constant step size: optimal ζ and convergence rates.

The first of the f					
r range	Optimal ζ in $\gamma_i \asymp n^{-\zeta}$	Private / non-private convergence rate			
$(0,(\alpha-1)/(2\alpha)]$	0	$O(n^{-2r})$			
$((\alpha-1)/(2\alpha),1]$	$(2r\alpha + 1 - \alpha)/(2r\alpha + 1)$	$O(n^{-2r\alpha/(2r\alpha+1)})$			
$(1,(\alpha+2)/2]$	$(\alpha+1)/(2r\alpha+1)$	$O\left(n^{-(2r\alpha-2r+2)/(2r\alpha+1)}\right)$			
$((\alpha+2)/2,\infty)$	$1/(1+\alpha)$	$O(n^{-\alpha/(1+\alpha)})$			

Non-constant Step Size Scheme

Table 4: Non-constant step size: optimal ζ and convergence rates.

r range	Optimal ζ in $\gamma_i \asymp n^{-\zeta}$	Private / non-private convergence rate
$(0,(\alpha-1)/(2\alpha)]$	0	$O(n^{-2r})$
$((\alpha - 1)/(2\alpha), (1 + \alpha)/(2\alpha))$	$(2r\alpha + 1 - \alpha)/(2r\alpha + 1 + \alpha)$	$O(n^{-(2r\alpha+\alpha-1)/(2r\alpha+1+\alpha)})$
$[(1+\alpha)/(2\alpha),\infty)$	$1/(1+\alpha)$	$O(n^{-\alpha/(1+\alpha)})$

Experiment

Non-Private Synthetic Data

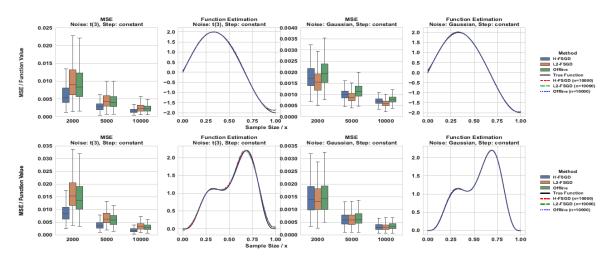


Figure 2: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with the constant step size scheme in Example 5.1.

Private Synthetic Data

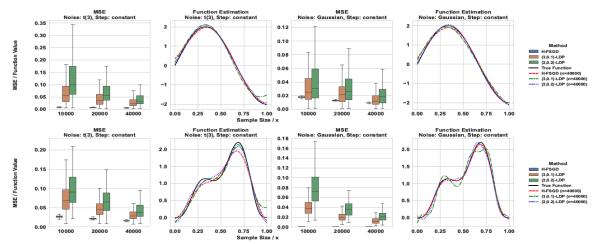


Figure 3: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with the constant step size scheme in Example 5.2.

- The proposed H-FSGD method significantly outperforms the least-squares-based FSGD under heavy-tailed noises.
- PH-FSGD can still recover the true function shape well, even under strong privacy constraints.
- Stronger privacy enhances protection but also leads to greater estimation error and slower convergence.

Takeaway Notes

Online Robust LDP Estimation Framework

Develop an online robust LDP framework enabling per-iteration privacy guarantees and outlier-resistant real-time nonparametric regression in dynamic environments.

One-pass Algorithms

Propose two one-pass algorithms, H-FSGD and PH-FSGD, that achieve O(1) time and space complexity per iteration without storing past observations.

Non-asymptotic Analysis

Establish comprehensive non-asymptotic convergence guarantees and identify optimal step-size schedules that achieve minimax-optimal rates.

Thank You!