

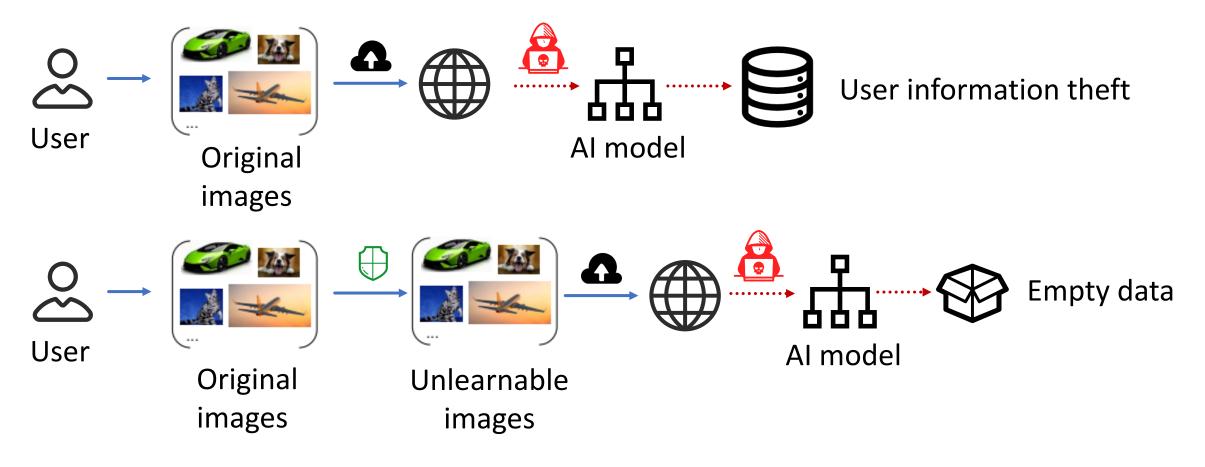
Versatile Transferable Unlearnable Example Generator

Zhihao Li^{1*} Jiale Cai^{1*} Gezheng Xu¹ Hao Zheng^{1,2} Qiuyue Li³ Fan Zhou³ Shichun Yang³ Charles Ling^{1,4} Boyu Wang^{1,4}

¹Western University ²Central South University ³Beihang University ⁴Vector Institute

Why Unlearnable Examples?

- The abundance of online data → rapid deep learning advances
- Concern: Personal data leakage in training
- Solution: Unlearnable Examples (UE) → perturb data to confuse training



Where Existing UEs Fall Short

- Most methods target training-set-specific data
- Poor performance in non-target or shifted settings
- Preliminary works only handle partial scenarios

Method	Intra- Domain	Cross- Domain	Cross- Task	Cross- Space	Cross- Architecture
EMN	\checkmark	×	×	×	×
LSP	\checkmark	×	×	×	\checkmark
TUE	\checkmark	×	×	×	×
GUE	\checkmark	×	×	×	\checkmark
14A	\checkmark	×	×	×	\checkmark
VTG	\checkmark	\checkmark	\checkmark	\checkmark	✓

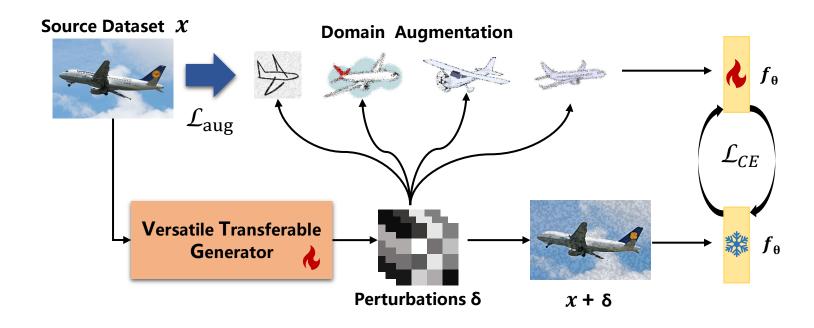
Versatile Transferable Generator (VTG)

Adversarial Domain Augmentation (ADA) synthesizes out-of-distribution samples, thereby improving its generalizability to unseen scenarios.

$$\arg\min_{\theta,\mu} [\mathcal{L}_{CE}(f_{\theta}(x+\delta),y) + \mathcal{L}_{CE}(f_{\theta}(\mathbb{C}_{\mu}(x)+\delta),y)]$$

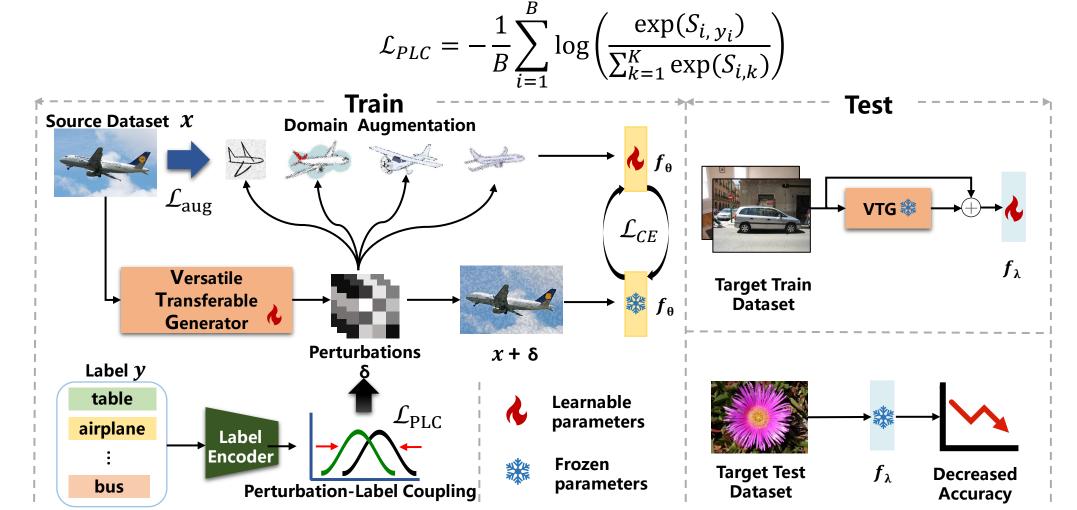
Perturbation Generator produce unlearnable perturbations for any image in a single forward pass, exhibiting superior generalizability and applicability for practical use.

$$\operatorname{argmin}_{\delta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{source}} \mathcal{L}_{CE}(f_{\theta}(x+\delta), y) \qquad \mathbb{E}_{x} \max(0, \|\delta\|_{\infty} - \epsilon)$$



Versatile Transferable Generator (VTG)

- Adversarial Domain Augmentation (ADA)
- Perturbation Generator
- Perturbation-Label Coupling (PLC) leverages contrastive learning to directly align perturbations with class labels.



Experimental Details

Comprehensive UE Transferable Evaluation Scenarios

- Intra-Domain scenario represents the conventional setting, where the training and test data are drawn from the same distribution.
- Cross-Domain scenario considers cases where the training and test sets share the same classes but originate from different distributions.
- Cross-Task scenario increases the challenge by introducing both distribution shifts and class mismatches.
- Cross-Space scenario is the most challenging scenario, where even the input space differs between training and test sets.
- Cross-Architecture scenario evaluates the generalizability of UEs across different network architectures.

Intra-Domain and Cross-Task scenarios

- VTG is more effective than other methods on CIFAR-10, CIFAR-100 and SVHN dataset.
- VTG gets random-guess level under all setting in both Intra-Domain and Cross-Task scenarios.

Source	Method	CIFAR-10	CIFAR-100	SVHN
	Clean	94.66	76.27	96.05
	Random	95.57	71.19	25.11
	EMN [4]	10.16	21.80	24.72
	LSP [10]	13.54	9.35	7.77
	REM [5]	15.18	69.26	95.98
CIFAR-10	TUE [6]	10.03	5.10	12.93
CIIAK-10	GUE [7]	13.25	3.87	8.17
	14A [11]	41.34	17.47	83.87
	PUE [35]	10.62	8.46	12.01
	Ours (ResNet)	9.99	0.99	9.65
	Ours (ViT)	9.54	1.21	7.94
	EMN [4]	27.27	3.95	9.64
	LSP [10]	24.16	9.00	17.03
	REM [5]	93.94	1.89	95.97
CIFAR-100	TUE [6]	94.31	1.21	96.02
CIFAR-100	GUE [7]	94.28	8.35	95.87
	14A [11]	40.02	17.36	85.18
	PUE [35]	11.61	2.62	18.58
	Ours (ResNet)	9.85	1.14	11.07
	Ours (ViT)	11.40	1.09	9.39
	EMN [4]	14.31	6.25	9.05
	LSP [10]	38.50	38.51	8.00
	REM [5]	94.26	69.97	49.01
SVHN	TUE [6]	93.91	69.42	9.12
SVIIIV	GUE [7]	94.31	48.37	13.70
	14A [11]	39.23	15.69	83.59
	PUE [35]	11.40	6.04	14.21
	Ours (ResNet)	10.66	1.76	6.38
	Ours (ViT)	11.16	1.65	7.41

Cross-Domain and Cross-Architecture scenarios

- VTG maintains unlearnability across images with diverse visual styles.
- VTG keeps its unlearnability even when transferred to other architectures.

Method	Art	Cartoon	Photo	Sketch	Avg.
Clean	76.92	81.25	83.75	85.42	81.84
Random	54.33	76.79	76.88	81.77	72.44
EMN [4]	43.75	74.11	71.88	14.58	51.08
LSP [10]	49.48	59.81	65.62	80.99	63.98
TUE [6]	38.71	72.05	62.50	9.11	45.59
GUE [7]	42.71	32.81	67.19	26.56	42.32
14A [11]	27.20	29.91	45.51	20.72	30.84
Ours (ResNet)	21.63	18.30	10.00	16.41	16.59
Ours (ViT)	20.31	15.18	17.19	20.57	18.31

Mathad	Network Architecture						
Method	VGG16	ResNet-50	DenseNet-121	ViT			
EMN [4]	29.30	17.90	18.60	24.37			
DC [17]	25.35	20.56	21.44	28.05			
CG [18]		11.30	13.40	_			
SG [9]	12.32	17.35	16.59	10.64			
GUE [7]	13.72	12.97	13.71	16.77			
Ours	8.92	10.03	9.69	10.53			

Cross-space scenarios

• VTG maintains effectiveness under resolution and domain shifts between low- and high-resolution datasets.

Source	Method	CIFAR-10	CIFAR-100	SVHN
	LSP[10]	94.16	70.49	9.23
	TUE[6]	94.06	69.76	95.45
A	GUE[7]	91.78	39.82	92.06
Art	14A[11]	40.13	17.62	86.50
	Ours (ResNet)	10.88	1.20	7.26
	Ours (ViT)	11.12	1.67	15.04
	LSP[10]	93.92	70.72	8.35
Cartoon	TUE[6]	93.75	70.75	95.79
	GUE[7]	87.50	49.94	94.89
	14A[11]	38.89	17.65	83.68
	Ours (ResNet)	9.45	1.69	15.94
	Ours (ViT)	10.04	3.78	10.21
	LSP[10]	94.01	69.86	13.20
	TUE[6]	94.00	70.01	95.87
Photo	GUE[7]	93.53	28.75	94.32
Filoto	14A[11]	40.95	16.50	84.12
	Ours (ResNet)	10.03	1.01	8.52
	Ours (ViT)	9.46	1.70	11.06
	LSP[10]	93.30	70.15	10.79
	TUE[6]	94.25	70.36	95.94
Sketch	GUE[7]	81.42	42.28	92.93
SKEWII	14A[11]	35.22	15.95	85.25
	Ours (ResNet)	10.04	1.18	9.69
	Ours (ViT)	10.00	2.16	12.65

Source	Method	Art	Cartoon	Photo	Sketch
	LSP[10]	54.69	38.02	64.06	25.00
	TUE[6]	47.92	76.04	69.53	82.81
CIFAR-10	GUE[7]	50.48	27.68	66.88	15.36
CIFAR-10	14A[11]	40.87	75.95	66.67	68.84
	Ours (ResNet)	11.98	10.71	11.25	4.69
	Ours (ViT)	15.38	20.26	10.94	17.97
CIEAR 100	LSP[10]	48.96	70.83	70.31	18.23
	TUE[6]	43.75	69.79	64.84	82.03
	GUE[7]	56.73	39.29	78.75	4.43
CIFAR-100	14A[11]	38.46	73.00	68.42	70.35
	Ours (ResNet)	13.94	11.16	14.37	2.34
	Ours (ViT)	14.09	15.71	11.18	10.55
	LSP[10]	45.83	52.08	69.53	21.09
	TUE[6]	31.77	72.40	69.53	82.81
CVIINI	GUE[7]	49.04	20.09	66.25	2.60
SVHN	14A[11]	36.54	73.84	67.25	64.32
	Ours (ResNet)	12.98	12.05	15.00	17.97
	Ours (ViT)	13.56	11.61	12.50	15.36

^{*} The image resolution is standardized to 224 \times 224 for PACS, while 32 \times 32 for the remaining datasets.

More Evaluation on ImageNet

 VTG demonstrates strong generalization across domains, tasks, and input spaces, showing consistent transferability and adaptability on diverse datasets from ImageNet* to various downstream benchmarks.

Source	Method	CIFAR-10	CIFAR-100	SVHN	Art	Cartoon	Photo	Sketch	Flowers	Cars	Food
ImageNet*	Clean	94.66	76.27	96.05	76.92	81.25	83.75	85.42	84.47	40.43	65.45
	LSP [11]	29.04	11.32	8.90	28.12	74.48	74.22	79.95	10.13	1.95	1.16
	14A [12]	39.90	11.40	80.38	35.10	69.62	67.25	66.83	15.15	6.69	16.01
	Ours	15.04	5.68	7.60	27.60	24.11	12.50	15.10	9.28	1.93	9.34

^{*} We randomly select a subset from the first 100 classes of ImageNet to construct a smaller ImageNet*.

Resistance to Defense Strategies

• VTG ensures unlearnability while providing robust protection against various defense strategies.

Method	w/o	Cutout	CutMix	Mixup	AT	D-VAE	AN-SDA
Clean	94.66	95.10	95.50	95.01	84.99	93.29	92.76
NTGA [8]	42.46	42.07	27.16	43.03	70.05	89.21	89.00
EMN [4]	10.16	20.63	26.19	32.83	84.80	91.42	88.01
REM [5]	15.18	26.54	29.02	34.48	47.51	86.38	79.28
SG [9]	24.42	24.12	29.46	39.66	76.38	38.89	59.80
LSP[10]	13.54	19.87	20.89	26.99	84.59	91.20	64.34
AR[25]	11.75	12.36	18.02	14.59	83.17	91.77	80.20
OPS[36]	15.56	61.68	76.40	33.13	11.08	88.95	78.83
Ours	9.99	10.03	14.11	13.71	10.83	10.57	28.27

Conclusion

- ☐ We introduce the first comprehensive evaluation framework to analyze the transferability of UEs across diverse practical scenarios, including Intra-Domain, Cross-Domain, Cross-Task, Cross-Space, and Cross-Architecture.
- ☐ We propose VTG, a versatile transferable generator effective across diverse scenarios.
 - Adversarial Domain Augmentation to generate diversified samples and compel the generator to produce perturbations beyond fixed distributions.
 - The Perturbation-Label Coupling mechanism employs contrastive learning to align perturbations with class labels, introducing unlearnability in a distribution-agnostic manner.
- ☐ We empirically validate the efficacy of our method within the proposed comprehensive transferable setting. Extensive experiments demonstrate VTG's superior performance and broad applicability across diverse scenarios.

Thank you!

- Code: https://github.com/zhli-cs/VTG
- Contact: zli3446@uwo.ca / jcai336@uwo.ca

