Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve

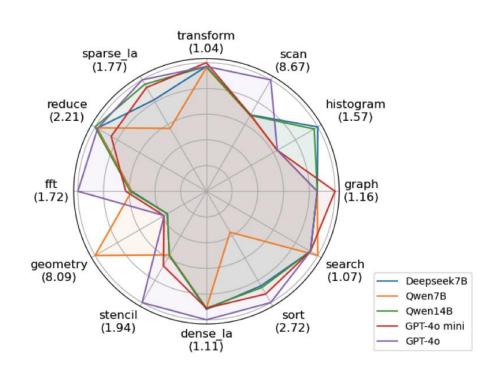
Yuanzhe Liu¹, Ryan Deng², Tim Kaler², Xuhao Chen^{2,3},
Charles E. Leiserson², Yao Ma¹, Jie Chen⁴

¹Rensselaer Polytechnic Institute ²Massachusetts Institute of Technology ³Michigan State University ⁴MIT-IBM Watson AI Lab, IBM Research

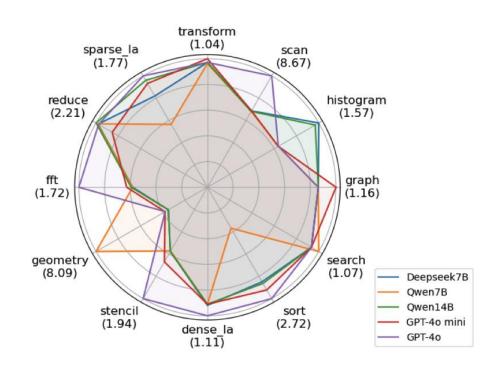
NeurIPS 2025

Motivation

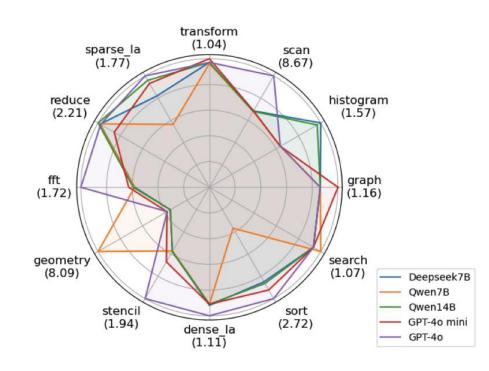
- Code Optimization is less explored.
- Task of code optimization: f(slower-code) = faster-code
- Slower code is
 - Compilable & Correct

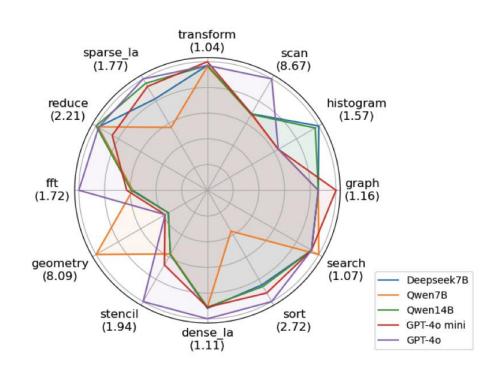

```
#include <iostream>
                                                                            #include <iostream>
using namespace std;
                                                                            using namespace std;
int main() {
                                                                            int main() {
    int n:
                                                                                int n;
    cin >> n;
                                                                                cin >> n;
    int sum = 0;
                                                                                cout << n*(n+1)/2 << end1;
    for (int i = 1; i <= n; i++) {
                                                                                return 0;
        sum += i;
    cout << sum << endl;
    return 0;
```

(a) Slower Code.


(b) Faster Code.

Shypula, Alexander, et al. "Learning performance-improving code edits." arXiv preprint arXiv:2302.07867 (2023).


 On ParEval benchmark, no one LLM performs the best on all problems


- On ParEval benchmark, no one LLM performs the best on all problems
- GPT-40 is the overall winner.

- On ParEval benchmark, no one LLM performs the best on all problems
- GPT-40 is the overall winner.
- E.g. on "Histogram"
 Deepseek7B and Qwen14B
 outperform GPT-4o by 1.6 ×

- On ParEval benchmark, no one LLM performs the best on all problems
- GPT-40 is the overall winner.
- E.g. on "Histogram"
 Deepseek7B and Qwen14B
 outperform GPT-4o by 1.6 ×
- Different LLM presents distinct capabilities.

How to use multiple agents to solve a coding problem?

- How to use multiple agents to solve a coding problem?
 - We advocate the concept of lessons

- How to use multiple agents to solve a coding problem?
 - We advocate the concept of *lessons*
 - Such lessons are summarized by LLM agents, learned by others, so they can collectively improve the code performance.

- How to use multiple agents to solve a coding problem?
 - We advocate the concept of *lessons*
 - Such lessons are summarized by LLM agents, learned by others, so they can collectively improve the code performance.

Original code for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) for (int k = 0; k < n; ++k) C[i][j] += A[i][k] * B[k][j];</pre>

Naive implementation of matrix multiplication C = AB.

```
Improved code, round 1

for (int i = 0; i < n; ++i)
  for (int k = 0; k < n; ++k)
    for (int j = 0; j < n; ++j)
        C[i][j] += A[i][k] * B[k][j];</pre>
```

Lesson: Reordering loops improves cache locality and increases performance. The order of (i,k,j) out of 6 different permutations often performs the best, because of how caches work.

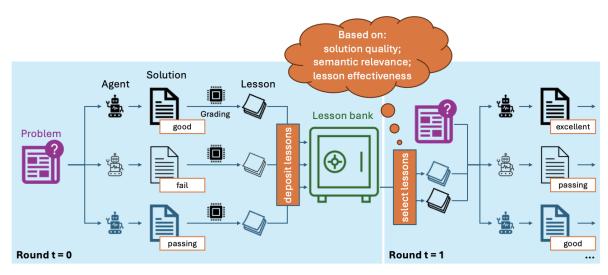


Figure 2: The LessonL framework (which may repeat multiple rounds).

- Lesson Solicitation
 - under different scenarios

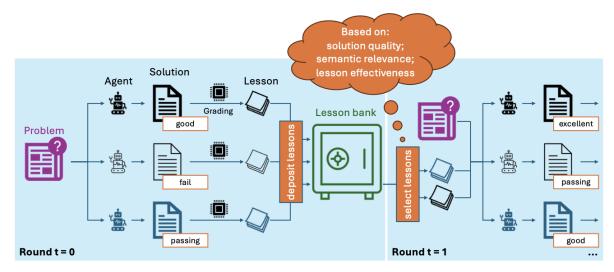


Figure 2: The LessonL framework (which may repeat multiple rounds).

- Lesson Solicitation
 - under different scenarios
- Lesson Banking and Selection
 - reduce context length

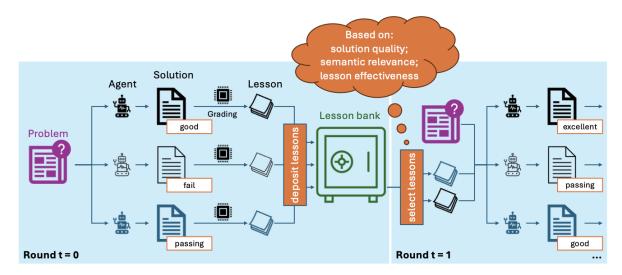


Figure 2: The LessonL framework (which may repeat multiple rounds).

- Lesson Solicitation
 - under different scenarios
- Lesson Banking and Selection
 - reduce context length
- EffectivenessAdjustment factor f:
 - adjust selection dynamically

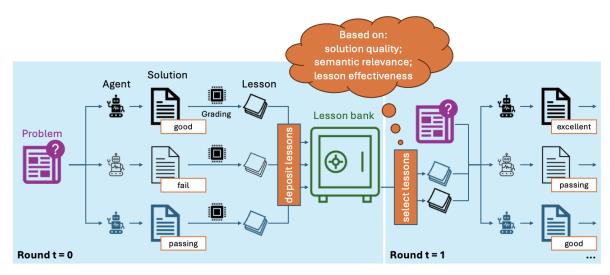


Figure 2: The LessonL framework (which may repeat multiple rounds).

- Lesson Solicitation
 - under different scenarios
- Lesson Banking andSelection
 - reduce context length
- EffectivenessAdjustment factor f:
 - adjust selection dynamically

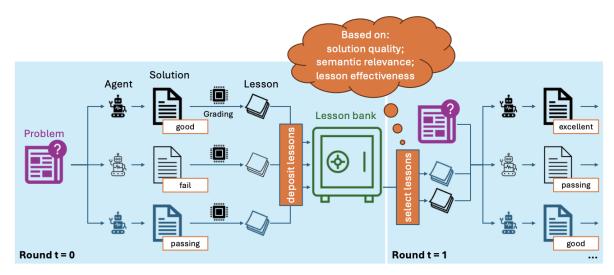


Figure 2: The LessonL framework (which may repeat multiple rounds).

Results on Code Optimization

ParEval	Serial mode			OpenMP mode		
	Correct	> 2x	Speedup	Correct	> 2x	Speedup
GPT-40	0.80 ± 0.00	0.16 ± 0.03	1.72 ± 0.11	0.73 ± 0.05	0.58 ± 0.05	2.93 ± 0.30
OpenAI o3	0.77 ± 0.02	$\textbf{0.23} \pm \textbf{0.04}$	$\textbf{2.21} \pm \textbf{0.16}$	0.72 ± 0.03	0.58 ± 0.03	$\textbf{3.55} \pm \textbf{0.27}$
MapCoder	0.88 ± 0.02	0.15 ± 0.02	1.85 ± 0.08	0.83 ± 0.05	0.58 ± 0.02	3.43 ± 0.17
LessonL	$\boxed{\textbf{0.91} \pm \textbf{0.02}}$	$\underline{0.21 \pm 0.01}$	2.16 ± 0.11	$\boxed{\textbf{0.86} \pm \textbf{0.01}}$	$\textbf{0.62} \pm \textbf{0.02}$	3.46 ± 0.03

LessonL models:

- deepseek-coder-7b-instruct-v1.5
- Qwen2.5-Coder-7B-Instruct
- Qwen2.5-Coder-14B-Instruct

Thanks for listening!

NeurIPS 2025 Exhibition Hall C,D,E Thu 4 Dec 4:30 p.m. – 7:30 p.m. PDT

paper

code