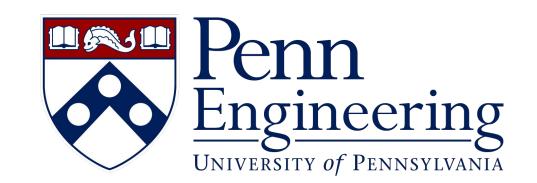
Probabilistic Stability Guarantees for Feature Attributions

Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, Eric Wong



— SCA

SCA-hard

 $\lambda = 0.125$

 $\lambda = 0.375$

 $\lambda = 0.250$

Motivation

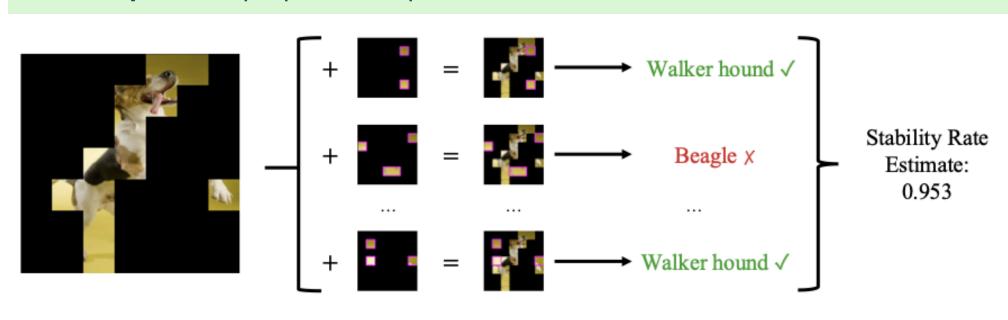
ML models are powerful but opaque – explanations can help elucidate them!

A good explanation should be **robust**: adding extra features should not change the prediction.

→ How can we measure the robustness of an explanation?

Stability Certification Algorithm (SCA)

Algorithm. For a certain radius, we **sample** perturbations of up to that radius and **compute** the proportion of prediction matches.



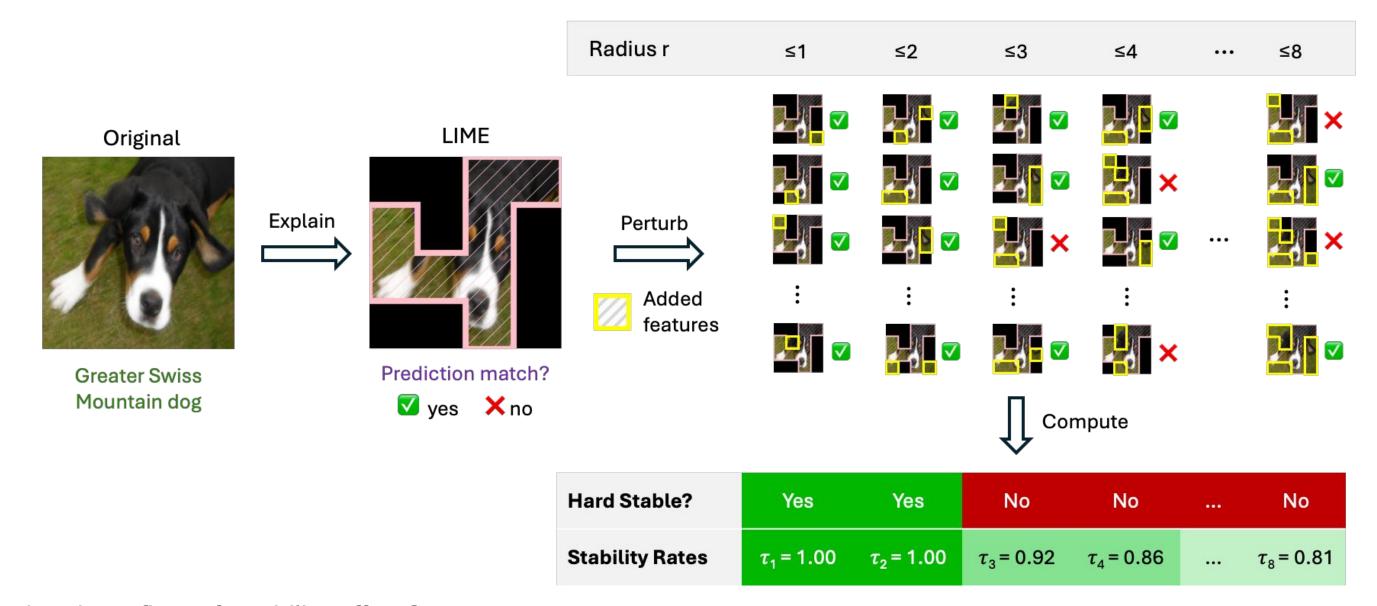
Theorem. If the estimator is computed with $N \ge \log(2/\delta)/(2\epsilon^2)$ samples, then with probability at least $1 - \delta$, the estimation accuracy compared to the true stability rate is $\le \epsilon$.

Soft Stability: a more scalable and flexible guarantee

Definition. [Hard Stability] An explanation is hard stable at radius r if including up to any r additional features does not change the prediction.

Hard stability guarantees rely on specialized architectures and are too conservative to be useful.

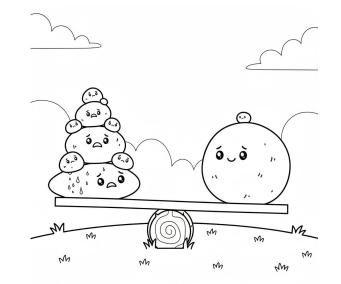
Definition. [Soft Stability] At radius r, an explanation's stability rate τ_r is the probability that adding up to r additional features does not change the prediction.



what are the key benefits soft stability offers?

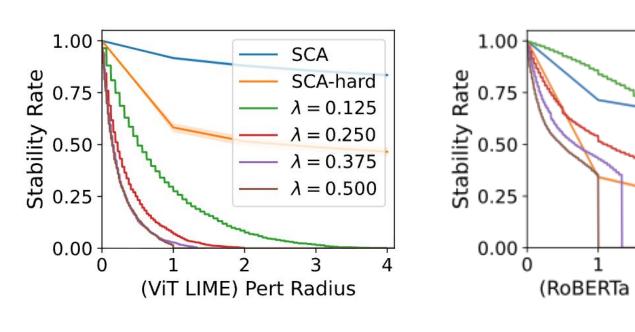
Model-agnostic certification: The soft stability rate is efficiently computable for any classifier, whereas hard stability can only certify smoothed classifiers.

Practical guarantees: Soft stability certificates scale and are more practically useful than those obtained from hard stability.



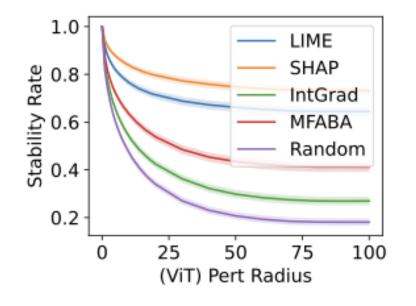
Check out the Blog/Paper!

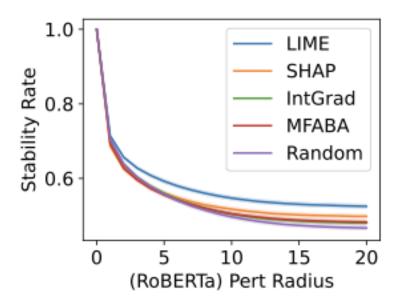
SCA certifies more



→ At larger radii, SCA yields meaningful soft stability certificates, while hard stability certificates quickly become vacuous as perturbation size grows.

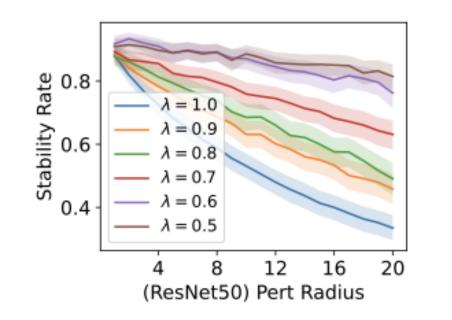
SCA across explanation methods

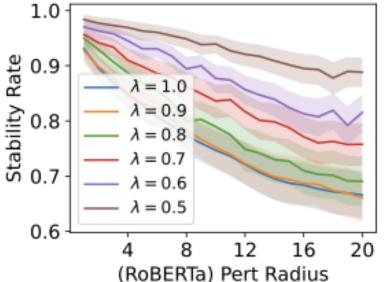




→ For vision models, LIME and SHAP are more stable than gradient methods, though all beat random; for RoBERTa, differences are smaller.

Mild smoothing can help





 \rightarrow Mild smoothing ($\lambda \ge 0.5$) can improve stability, especially for RoBERTa.