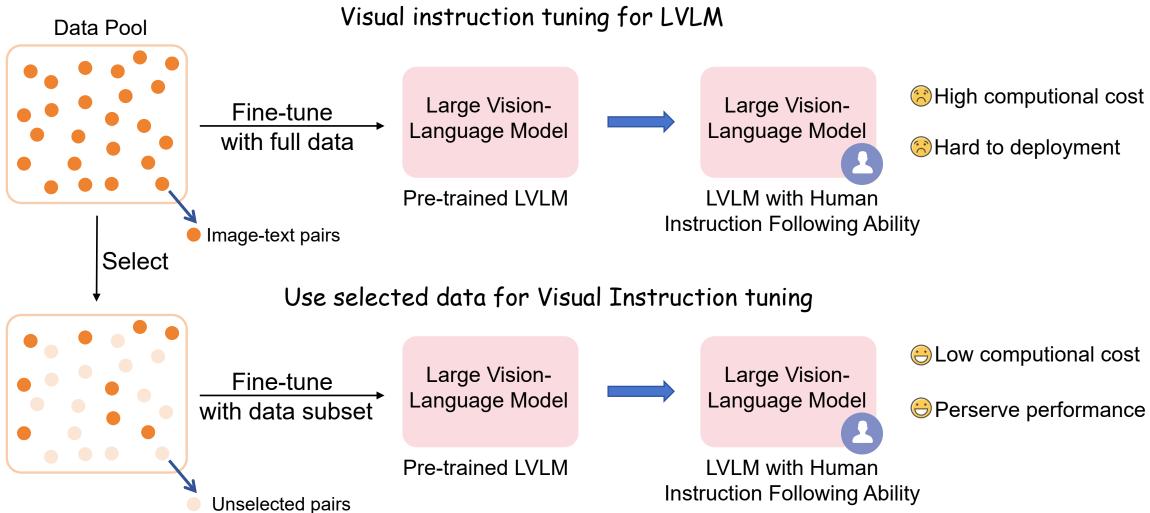
CoIDO: Efficient Data Selection for Visual Instruction Tuning via Coupled Importance-Diversity Optimization

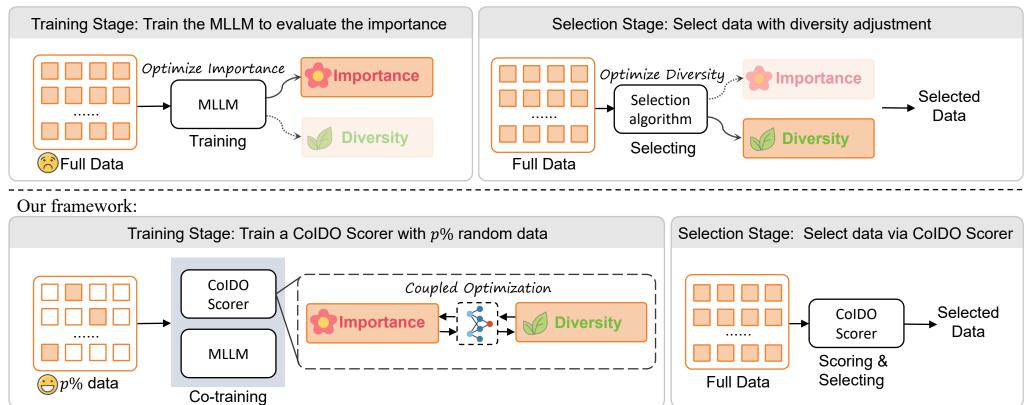
Yichen Yan, Ming Zhong, Qi Zhu, Xiaoling Gu, Jinpeng Chen, Huan Li*

Introduction



Motivation

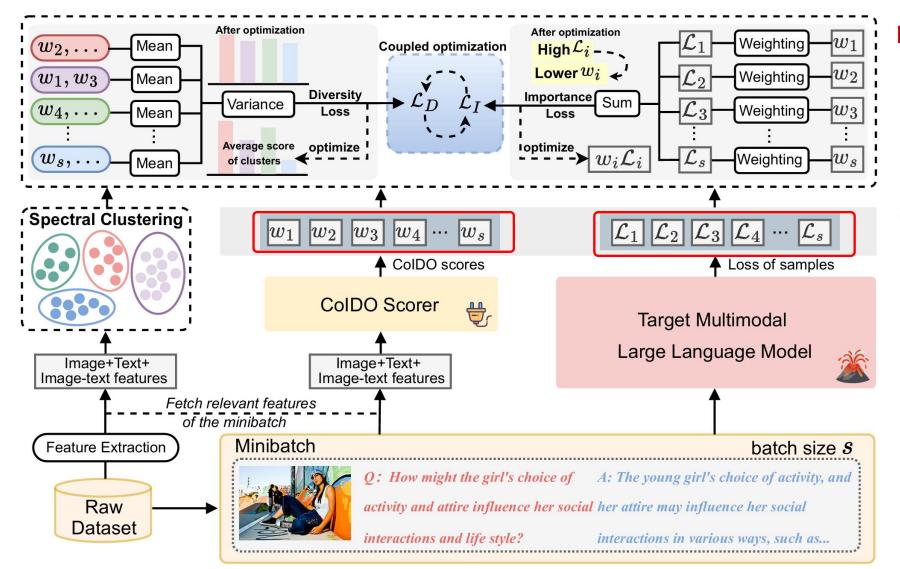
Previous state-of-the-art method:



Data Importance: Whether data sample is valuable and informative (e.g., detailed caption, high resolution)

Data Diversity: Whether subset is diverse (including various tasks and domains)

Method (framework)



Importance Loss

For per sample:

Higher CE loss → More challenging
→ More Important

$$\mathcal{L}_I = \sum_{i=1}^m \sum_{k=1}^{n_i} w_{ik} \cdot \boxed{\text{CE}(y_{ik}, \hat{y}_{ik})},$$

Lower $w_{ik} \rightarrow \text{Higher } \mathcal{L}_{ik}$

Diversity Loss

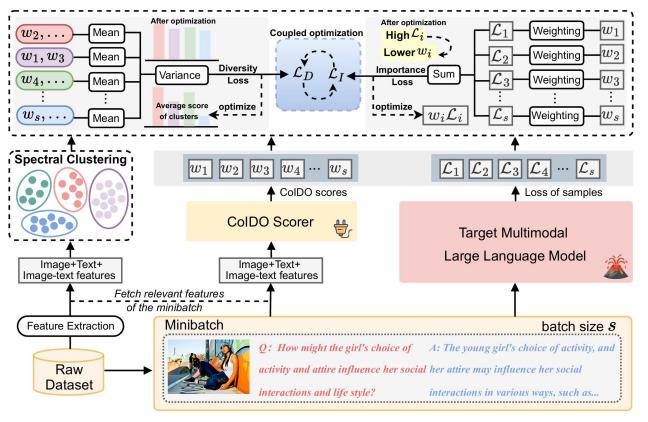
For per batch:

$$\mathcal{L}_D = \text{Var}(\{\bar{w}_1, \bar{w}_2, \dots, \bar{w}_m\}),$$

 $\bar{w}_i = \frac{1}{n_i} \sum_{k=1}^{n_i} w_{ik},$

Balanced weight distribution across clusters

Method (loss function)



Maximum Likelihood Estimation by homoscedastic uncertainty

$$\log p(\mathbf{y}, \mathbf{w} \mid \theta, \sigma_I, \sigma_D) = \sum_{i,k} \log p(y_{ik} \mid x_{ik}, \theta, \sigma_I) + \sum_{i} \log p(\bar{w}_i \mid \theta, \sigma_D).$$

For importance objective:

$$p(y_{ik} \mid x_{ik}, \theta, \sigma_I, w_{ik}) = \text{Softmax}\left(\frac{w_{ik}}{\sigma_I^2} f_{\theta}(x_{ik})\right),$$

we use **Taylor expansion**:

$$-\sum_{i,k} \log p(y_{ik} \mid x_{ik}, \theta, \sigma_I) = \frac{1}{\sigma_I^2} \mathcal{L}_I + \log \sigma_I.$$

For diversity objective:

$$p(\bar{w}_i|\theta,\sigma_D) = \mathcal{N}(\bar{w}_i;\mu,\sigma_D^2).$$

$$-\sum_{i} \log p(\bar{w}_i \mid \theta, \sigma_D) = \frac{1}{2\sigma_D^2} \mathcal{L}_D + \log \sigma_D,$$

Coupled Optimization:
$$\mathcal{L}_{ ext{total}} = rac{1}{\sigma_I^2} \mathcal{L}_I + rac{1}{2\sigma_D^2} \mathcal{L}_D + \log \sigma_I + \log \sigma_D.$$

Experiments (overall performance)

MLLM Training Data Cost: the proportion of data used to train the selection model relative to model fine-tuning.

Table 1: Overall performance and efficiency comparison of selection approaches across various multimodal evaluation benchmarks, with the best measures in bold and the second-best underlined.

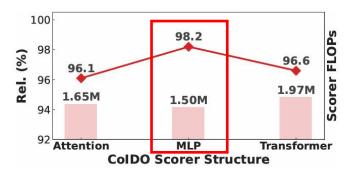
Method	VQAv2	GQA	VizWiz	SQA-I	TextVQA	POPE	MME	MMBench		LLaVA-	Rel. (%)	MLLM Training	Total
								en	cn	Bench		Data Cost (%)	FLOPs
Full Data	79.1	63.0	47.8	68.4	58.2	86.4	1476.9	66.1	58.9	67.9	100	\	10.2E
					Mo	del-free I	Methods						
RANDOM	75.9	59.3	43.6	68.6	55.3	<u>85.9</u>	<u>1461.0</u>	60.3	53.3	64.5	95.1	_	\
CLIP-Score 29	73.4	51.4	43.0	65.0	54.7	85.3	1331.6	55.2	52.0	66.2	91.2	\	\
EL2N 32	76.2	58.7	43.7	65.5	53.0	84.3	1439.5	53.2	47.4	64.9	92.0	_	\
PERPLEXITY 33	75.8	57.0	<u>47.8</u>	65.1	52.8	82.6	1341.4	52.0	45.8	68.3	91.6	_	\
SEMDEDUP 30	74.2	54.5	46.9	65.8	<u>55.5</u>	84.7	1376.9	52.2	48.5	70.0	92.6	_	_
D2-Pruning 31	73.0	58.4	41.9	69.3	51.8	85.7	1391.2	<u>65.7</u>	<u>57.6</u>	63.9	94.8	`	\
SELF-SUP 30	74.9	59.5	46.0	67.8	49.3	83.5	1335.9	61.4	53.8	63.3	93.4	_	\
					Mode	l-involve	d Method	S					
Self-Filter 20	73.7	58.3	53.2	61.4	52.9	83.8	1306.2	48.8	45.3	64.9	90.9	100	31.2E
TIVE♣ ♦ [17]	76.0	58.4	44.6	69.8	53.3	85.7	1448.4	66.9	58.7	63.4	96.7	100+8	11.7E
ICONS♣ ♦ [19]	77.0	60.4	45.5	70.4	54.5	86.1	1447.7	64.6	54.0	66.9	97.1	100+5+2.2	12.6E
COINCIDE 21	$\overline{76.5}$	59.8	46.8	69.2	55.6	86.1	1495.6	63.1	54.5	67.3	97.4	<u>100</u>	4.9E
CoIDO (Ours)	77.2	60.4	47.1	69.4	55.6	85.4	1450.2	63.8	56.7	70.1	98.2	20	4.2E

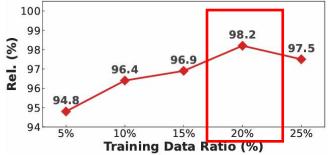
COIDO outperforms all competitors in terms of both efficiency (lowest training FLOPs) and aggregated accuracy

Experiments (ablation and parameter study)

Table 2: Ablations of optimization methods (the best in bold and the second-best underlined).

Loss Function	VQAv2	GQA	Vizwiz	SQA-I	TextVQA	POPE	MME	MMBench(en)	MMBench(cn)	LLAVA-B	Rel. (%)
\mathcal{L}_I	77.9	48.9	44.6	59.7	52.5	86.2	1393.5	51.1	44.9	64.9	89.0
$\mathcal{L}_I + \mathcal{L}_D$	74.5	55.8	46.4	67.3	52.6	83.5	1339.7	57.0	50.9	62.3	92.0
$\lambda \mathcal{L}_I + (1 - \lambda) \mathcal{L}_D$	76.1	<u>59.4</u>	<u>46.8</u>	<u>68.7</u>	<u>54.4</u>	85.2	1465.6	<u>60.5</u>	<u>54.0</u>	64.6	95.9
Ours	77.2	60.4	47.1	69.4	55.6	<u>85.4</u>	1450.2	63.8	56.7	70.1	98.2





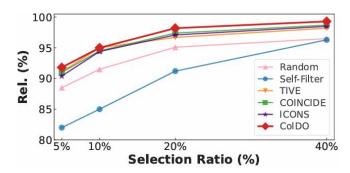


Figure 3: Ablations of different CoIDO Scorer architectures.

Figure 4: Comparison of different training data ratios p%.

Figure 5: Performance vs. selection ratios γ .

Experiments (generalizability and transferability)

Table 3: Performance of CoIDO on the Vision-Flan dataset (20% data selection). [‡] CoIDO scorer trained on LLaVA-665K and applied to Vision-Flan (out-of-domain transfer).

Model / Setting	VQAv2	GQA	VizWiz	SQA	POPE	TextVQA	MME	MMBench(en)	MMBench(cn)	LLaVA-B	Rel. (%)
Full Fine-tune	74.5	47.1	52.8	61.8	46.4	85.7	1480.6	40.2	46.2	38.2	100.0
Random	<u>74.6</u>	44.3	50.0	59.8	40.9	81.3	1407.1	49.2	48.3	33.6	97.8
CoIDO	75.7	<u>45.1</u>	53.5	62.3	45.3	82.8	1452.9	52.0	46.8	<u>37.6</u>	102.1
$\mathrm{CoIDO}^{\ddagger}$	75.7	46.8	<u>53.3</u>	66.2	<u>42.1</u>	85.5	1486.1	<u>51.4</u>	<u>47.3</u>	40.8	103.7

Generalizability: the ability of the proposed data selection frame work to be directly applied to other models or datasets.

Transferability: whether a CoIDO scorer trained on one domain can be reused to select informative data in another, out-of-domain corpus.

Thanks