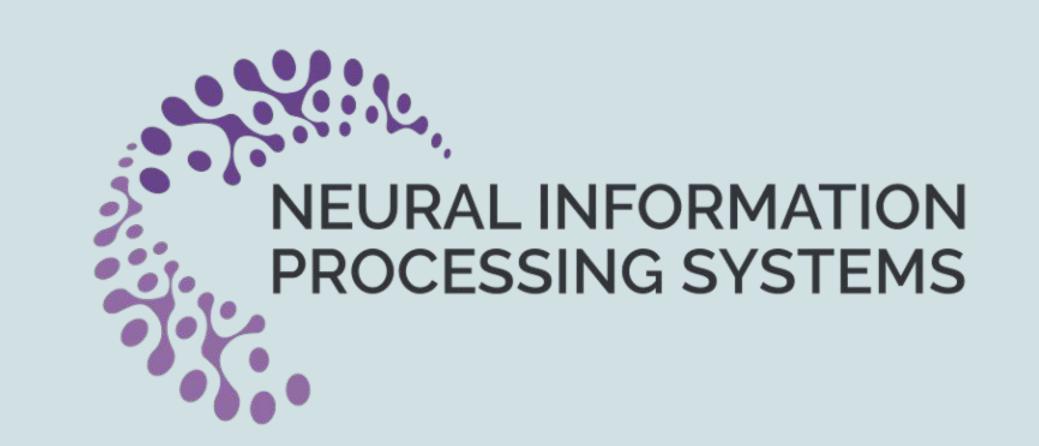


Data Fusion for Partial Identification of Causal Effects

Quinn Lanners¹, Cynthia Rudin¹, Alexander Volfovsky¹, Harsh Parikh²

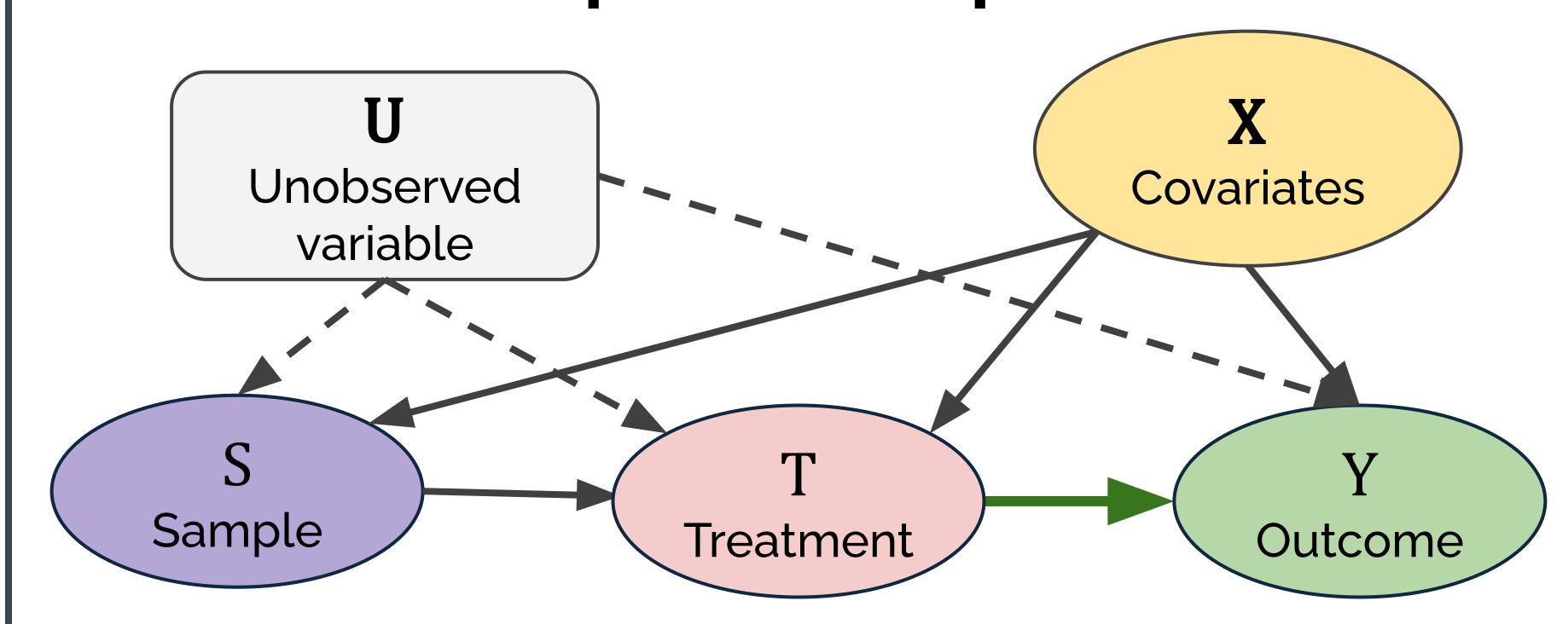
¹Duke University, ²Yale University



Contributions

- Interpretable sensitivity parameters:
- \circ γ quantify the extent of external validity violations
- \circ ρ quantify extend of unmeasured confounding.
- Doubly robust estimator for estimating treatment effect bounds as a function of (γ, ρ) , without relying on strong distributional or parametric assumptions.
- Operationalize an efficient *breakdown frontier analysis*, which characterizes regions in the (γ, ρ) space where the treatment effect remains conclusively positive (or negative)
- Allowing for assessment of the robustness of causal conclusions under simultaneous assumption violations.

Setup & Assumptions



We aim to estimate the ATE (i.e. the arrow from $T \rightarrow Y$). For identification, we require either*:

A.1. No Unobserved Confounding in Observational Data

 $(Y(1),Y(0))\perp T \mid X=x, S=0$

A.2. Study exchangeability

$$(Y(1),Y(0))\perp S \mid X=x$$

*In addition to SUTVA, consistency, positivity, and internal validity of the RCT.

Partial ID Framework

Estimable quantities:

$g_s(\mathbf{x})$	Sample probability: P(S=s X = x)
$e_t(\mathbf{x},s)$	Propensity score: $P(T=t X=x, S=s)$
$\mu(\mathbf{x},\mathbf{s},\mathbf{t})$	Expected outcome: $E[Y(t) X=x, S=s]$

Target:
$$E[Y(t)|X=x] = g_1(x)\mu(x,1,t) + g_0(x)\mu(x,0,t)$$
Identified Not identified without A1 or A2

 ρ : Level of violation to conditional ignorability. γ : Level of violation to study exchangeability.

$$\rho = \left| 1 - \frac{E[Y(t)|\mathbf{X},S=0,T=1-t]}{E[Y(t)|\mathbf{X},S=0,T=t]} \right| \gamma = 1 - \left| \frac{E[Y(t)|\mathbf{X},S=0]}{E[Y(t)|\mathbf{X},S=1]} \right|$$

Without Assumption A or B, We use ho and γ to bound $\mu(x,0,t)$

$$g_{1}(\mathbf{X})\mu(\mathbf{X},1,t) + g_{0}(\mathbf{X})\max\{w(\mathbf{X},t,-\rho),v(\mathbf{X},t,-\gamma)\}$$

$$\leq E[Y(t)|\mathbf{X}] \leq$$

$$g_{1}(\mathbf{X})\mu(\mathbf{X},1,t) + g_{0}(\mathbf{X})\min\{w(\mathbf{X},t,\rho),v(\mathbf{X},t,\gamma)\}$$

where

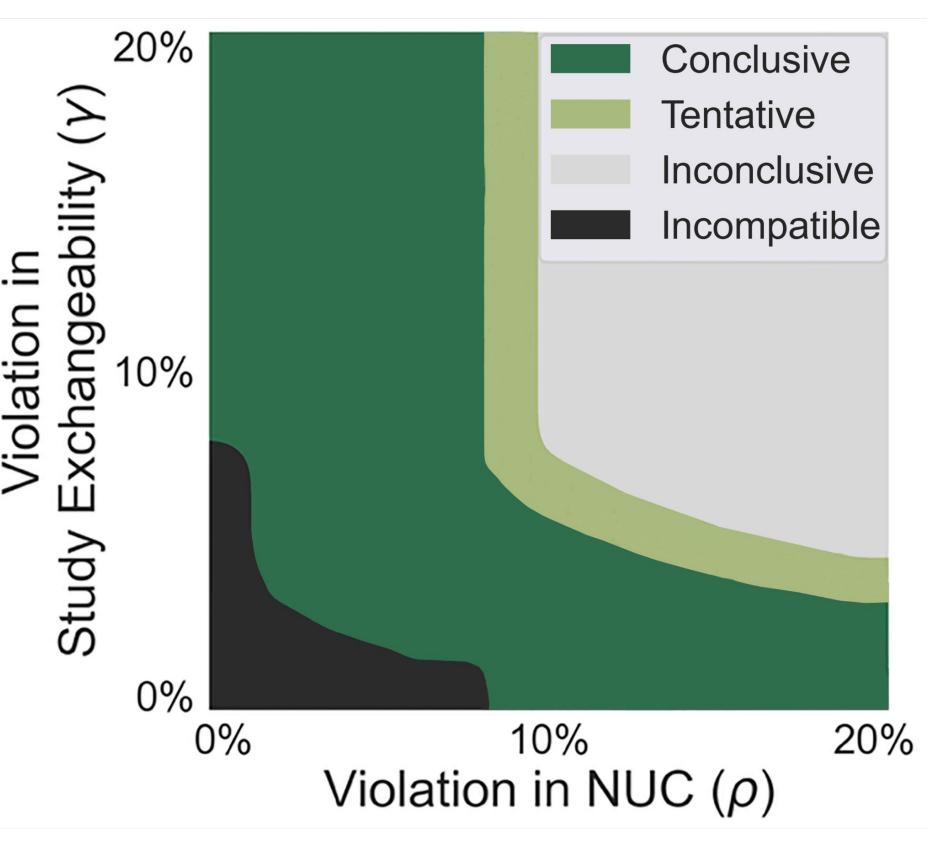
$$w(\mathbf{x},t,\rho) = e_{t}(\mathbf{x},0)\mu(\mathbf{x},0,t) + e_{1-t}(\mathbf{x},0)(1+\rho)\mu(\mathbf{x},0,t),$$
$$v(\mathbf{x},t,\gamma) = (1+\gamma)\mu(\mathbf{x},1,t)$$

Estimation

- 1. Approximate min and max using the Boltzmann operator to create smooth, differentiable approximations of these bounds.
- 2. Derive the efficient influence functions.
- . Construct bias corrected estimators.

Breakdown Frontier Plots

We assess how conclusions change under varying degrees of Assumptions A and B violations by estimating treatment effect (TE) bounds across a grid of (γ, ρ) values and visualizing them in a Breakdown Frontier Plot (Master & Poirier, 2020).



- Conclusive: TE is + (or -) with $(1-\alpha)$ confidence level.
- Tentative: TE bound point estimates are both + (or -)
- Inconclusive: TE bound point estimates intersect zero,
- Incompatible: γ and ρ imply assumptions that contradict observed discrepancies between the study group

Project STAR

We apply our framework to Project STAR, a large-scale study conducted in TN to investigate the effect of class size on student learning (Mosteller, 1995; Achilles et al., 2008). We explore:

(a) ATE and (b) CATE for students who enrolled in kindergarten before age six (left) and at six or older (right).

