

Scalable Cross-view Sample Alignment for Multi-view

Clustering with View Structure Similarity

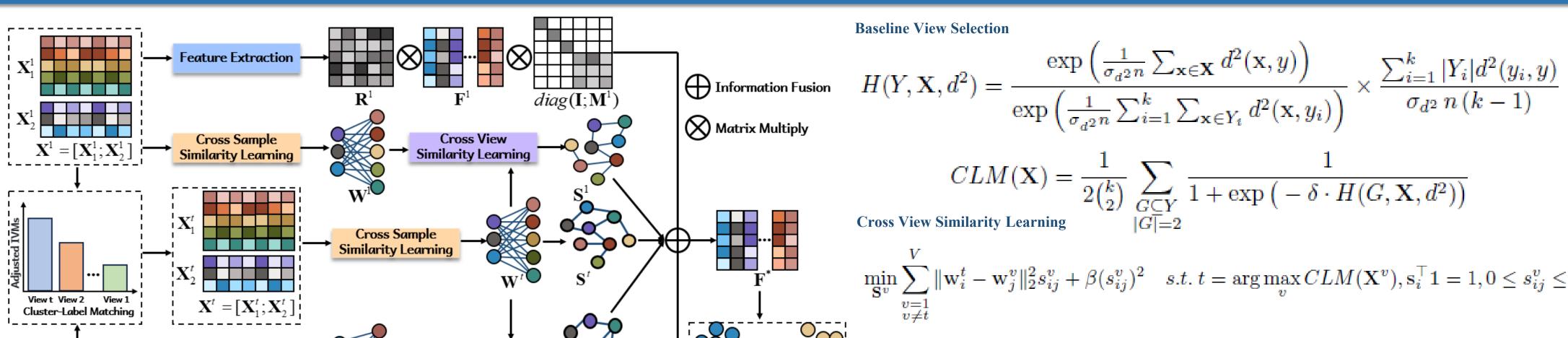
Jun Wang¹, Zhenglai Li², Chang Tang³, Suyuan Liu¹, Hao Yu¹

Chuan Tang¹, Miaomiao Li^{4*}, Xinwang Liu^{1*}

Motivation

- > Due to semantic discrepancies across views and the absence of sup ervision, establishing strict one-to-one correspondences is often diff icult. In real-world scenarios, the sample relationships of different views are typically many-to-many, and enforcing strict matching m ay introduce noise and lead to sub-optimal alignment
- > While some recent methods employ joint learning frameworks tha t integrate alignment with feature representation to enhance perfor mance, they often fail to model explicit alignment relationships, th us limiting their scalability to other multi-view clustering methods that are not applicable in sample non-alignment Scenarios
- >Clustering performance is heavily influenced by the choice of a be nchmark view, yet selecting an appropriate one remains an open c hallenge in current approaches

Contribution


- > We propose to select the baseline view by measuring the similarity between sample cluster distributions and their corresponding labe Is within each view, effectively minimizing the impact of irrelevant or noisy structural information on the alignment process.
- > We propose a structural representation for each view based on the correlation between nonaligned and aligned samples. This represe ntation guides cross-view alignment by integrating sample-level fe atures with intrinsic structural information.
- > An alternating optimization algorithm is proposed to efficiently so lve the model. Its effectiveness is validated through extensive expe riments on eight multi-view datasets.

Optimization

Algorithm 1 The Algorithm of SSA-MVC.

- 1: Input: Unaligned multi-view data $\{X^v\}_{v=1}^V$, the number of clusters k, the unified feature dimension d, and the hyper-parameter λ
- 2: Construct the cross-view similarity graph $\{S^v\}_{v=1}^V$ via Eqs. (3-(6)).
- 3: Initialize $\{\mathbf{R}^v\}_{v=1}^V$, $\{\mathbf{M}^v\}_{v=1}^V$, $\{\alpha_v\}_{v=1}^V$.
- 4: while not converge do
- Update F* via Eq. (8).
- Update $\{\mathbf{R}^v\}_{v=1}^V$ via Eq. (10).
- Update $\{\alpha_v\}_{v=1}^V$ via Eq. (11). Update $\{\mathbf{M}^{v}\}_{v=1}^{V}$ via Eq. (13)
- 9: end while
- 10: Conduct k-means clustering algorithm on the consensus partition F^* .
- 11: Output: Clustering results Y.

Methods

 $\min_{\mathbf{S}^v} \sum \|\mathbf{w}_i^t - \mathbf{w}_j^v\|_2^2 s_{ij}^v + \beta(s_{ij}^v)^2 \quad s.t. \ t = \arg\max_v CLM(\mathbf{X}^v), \mathbf{s}_i^\top \mathbf{1} = 1, 0 \le s_{ij}^v \le 1,$

$$\max_{\mathbf{R}^{v}, \mathbf{F}^{*}, \mathbf{M}^{v}, \alpha_{v}} \operatorname{Tr} \left(\mathbf{F}^{*\top} \left(\alpha_{t} \mathbf{F}^{t} \mathbf{R}^{t} + \sum_{\substack{v=1 \ v \neq t}}^{V} \alpha_{v} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{v} \end{bmatrix} \mathbf{F}^{v} \mathbf{R}^{v} \right) \right) + \lambda \sum_{v=1}^{V} \operatorname{Tr} (\mathbf{M}^{v\top} \mathbf{S}^{v})$$

$$s.t.\ t = \arg\max_{v} CLM(\mathbf{X}^v), \mathbf{F}^{*\top}\mathbf{F}^* = \mathbf{I}, \mathbf{R}^{v\top}\mathbf{R}^v = \mathbf{I}, \sum_{v=1}^{V} \alpha_v^2 = 1, \mathbf{M}^{v\top}\mathbf{M}^v = \mathbf{I},$$

ACC NMI ARI F1score

Evaluation Metric

(d) 100leaves

Evaluation Metric

(c) MSRCV

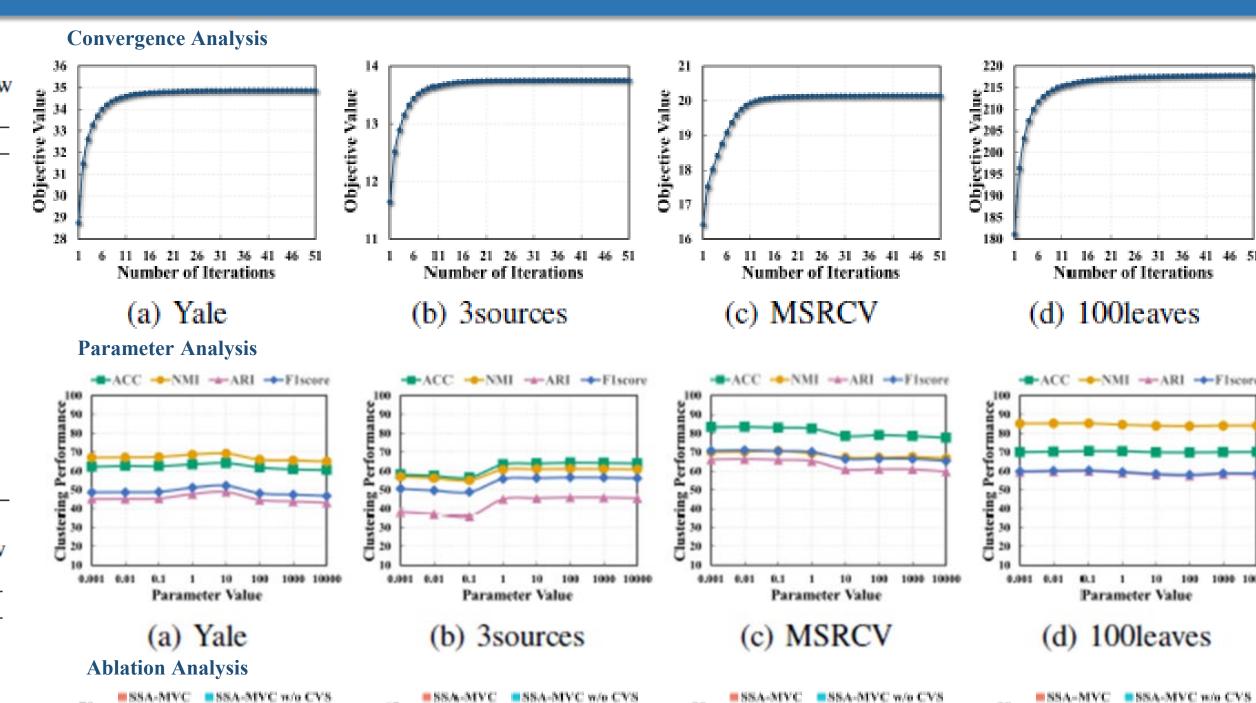
Experiments

Evaluation Metric

(a) Yale

Clustering Results

Table 1: ACC comparison of all methods with and without Hungarian alignment on eight multi-view datasets under a sample alignment ratio $\rho = 50\%$


imilarity Learning

→ Feature Extraction —

datasets under a sample anginnent ratio $\rho = 50\%$.										
Method	Yale	3sources	MSRCV	100leaves	HW	Scene	EMNIST	Hdigit		
EEOMVC	58.18 ± 0.00	59.76 ± 0.00	72.86 ± 0.00	65.44 ± 0.00	93.85 ± 0.00	26.91±0.00	46.11±0.00	65.93±0.00		
EEOMVC + Hungarian	52.73 ± 0.00	48.52 ± 0.00	71.90 ± 0.00	67.19 ± 0.00	67.30 ± 0.00	26.00 ± 0.00	44.24 ± 0.00	62.28 ± 0.00		
DealMVC	33.94 ± 0.00	31.01 ± 0.00	28.10 ± 0.00	7.69 ± 0.00	47.94 ± 0.00	22.54 ± 0.00	45.62 ± 0.00	65.66 ± 0.00		
DealMVC + Hungarian	24.85 ± 0.00	29.11 ± 0.00	28.29 ± 0.00	9.34 ± 0.00	39.97 ± 0.00	21.86 ± 0.00	37.83 ± 0.00	82.72 ± 0.98		
MVCAN	32.48 ± 2.50	31.12 ± 2.31	58.14 ± 1.76	49.51 ± 1.24	50.62 ± 0.42	33.30 ± 0.41	45.06 ± 1.02	65.50 ± 2.98		
MVCAN + Hungarian	33.09 ± 1.56	49.37 ± 4.60	51.20±2.80	40.71 ± 1.53	47.08 ± 3.56	29.75±0.54	49.56 ± 9.49	57.37±3.76		
EBMGC	39.39 ± 0.00	38.46 ± 0.00	42.86 ± 0.00	33.94 ± 0.00	56.75 ± 0.00	21.58 ± 0.00	33.50 ± 0.00	50.91 ± 0.00		
EBMGC + Hungarian	32.73 ± 0.00	40.24 ± 0.00	47.14 ± 0.00	33.94 ± 0.00	51.70 ± 0.00	26.33 ± 0.00	41.00 ± 0.00	59.46 ± 0.00		
Vsc_mH	53.94 ± 0.00	62.13 ± 0.00	64.29 ± 0.00	38.56 ± 0.00	42.50 ± 0.00	28.03 ± 0.00	46.47 ± 0.00	65.19 ± 0.00		
OpVuC	53.94 ± 0.00	57.40±0.00	30.00 ± 0.00	53.13 ± 0.00	30.10 ± 0.00	31.82 ± 0.00	51.09 ± 0.00	62.90 ± 0.00		
DČMVC	27.15 ± 1.01	46.51 ± 4.52	45.71 ± 2.29	48.83 ± 0.83	69.34 ± 1.01	26.02 ± 0.60	59.55 ± 3.60	65.74 ± 2.31		
DCMVC + Hungarian	23.88 ± 1.19	35.15 ± 1.10	44.57 ± 2.46	39.34 ± 0.95	50.47 ± 0.99	24.07 ± 0.45	40.11 ± 1.28	35.80 ± 0.99		
LMTC	52.58±3.76	48.28 ± 3.49	53.29 ± 3.15	35.58 ± 0.94	64.99±1.16	28.96 ± 0.92	41.91 ± 0.80	59.25±0.30		
LMTC + Hungarian	54.61±4.74	48.05 ± 1.18	55.43±3.29	35.30 ± 1.45	54.24±2.72	28.53 ± 0.86	41.69 ± 0.70	55.46 ± 2.13		
TMSL	24.82 ± 1.70	42.25 ± 2.66	43.98 ± 0.97	47.47 ± 1.40	62.61 ± 0.61	29.13 ± 0.49	OOM	OOM		
TMSL + Hungarian	68.79 ± 2.78	56.21 ± 1.05	44.45±1.45	47.12 ± 1.11	53.12 ± 0.05	27.02 ± 0.24	OOM	OOM		
DSTL	35.91 ± 1.93	61.54 ± 0.00	39.48 ± 3.81	36.87 ± 1.42	47.61 ± 1.57	20.45 ± 0.59	28.87 ± 0.40	40.90 ± 0.68		
DSTL + Hungarian	37.73±2.76	59.76 ± 0.19	43.71 ± 1.43	30.57 ± 1.03	43.33 ± 0.51	19.31±0.79	30.36 ± 0.33	50.09 ± 0.00		
Ours	64.24 ± 3.62	64.44 ± 1.29	83.52 ± 0.39	70.63 ± 1.29	96.55 ± 0.00	35.91 ± 0.27	77.38 ± 3.14	71.78 ± 1.26		

Table 2: NMI comparison of all methods with and without Hungarian alignment on eight multi-view datasets under a sample alignment ratio a - 50%

Method	Yale	3sources	MSRCV	100leaves	HW	Scene	EMNIST	Hdigit
EEOMVC	62.23±0.00	39.32 ± 0.00	56.08 ± 0.00	75.62 ± 0.00	88.20 ± 0.00	16.59 ± 0.00	32.54 ± 0.00	70.96 ± 0.00
EEOMVC + Hungarian	57.37 ± 0.00	31.87 ± 0.00	56.93 ± 0.00	77.03 ± 0.00	62.65 ± 0.00	18.26 ± 0.00	29.18 ± 0.00	53.11 ± 0.00
DealMVC	38.08 ± 0.00	6.69 ± 0.74	14.00±3.92	25.34 ± 0.44	27.20±0.89	11.89 ± 1.09	31.39 ± 0.59	39.90±1.52
DealMVC + Hungarian	23.65 ± 0.00	7.31 ± 0.48	13.08 ± 0.17	27.34 ± 3.63	26.08 ± 2.49	16.31 ± 3.23	22.80 ± 0.48	65.46 ± 1.81
MVCAN	38.43 ± 1.87	12.87 ± 1.67	46.19 ± 1.94	69.50 ± 0.95	32.31 ± 0.48	30.96 ± 0.89	20.14 ± 0.13	60.89 ± 1.68
MVCAN + Hungarian	38.53 ± 1.22	47.72 ± 3.00	35.16 ± 4.14	62.08 ± 1.45	45.05 ± 5.03	25.76 ± 0.33	37.94±15.14	53.82 ± 3.54
EBMGC	43.31 ± 0.00	23.68 ± 0.00	22.79 ± 0.00	58.22 ± 0.00	35.99 ± 0.00	11.14 ± 0.00	17.99 ± 0.00	25.07 ± 0.00
EBMGC + Hungarian	38.18 ± 0.00	23.98 ± 0.00	24.79 ± 0.00	58.22 ± 0.00	29.52 ± 0.00	15.08 ± 0.00	19.44 ± 0.00	39.70 ± 0.00
Vsc_mH	62.00 ± 0.00	48.81 ± 0.00	56.01 ± 0.00	68.53 ± 0.00	30.67 ± 0.00	25.41 ± 0.00	36.92 ± 0.00	55.77 ± 0.00
OpVuC	55.77 ± 0.00	36.86 ± 0.00	13.63 ± 0.00	78.00 ± 0.00	17.74 ± 0.00	29.69 ± 0.00	45.94 ± 0.00	47.51 ± 0.00
DČMVC	31.40 ± 1.27	26.22 ± 2.46	33.61 ± 2.59	67.15 ± 0.42	60.71 ± 3.05	15.64 ± 0.32	61.11 ± 2.62	59.83±1.83
DCMVC + Hungarian	27.63 ± 1.07	16.49 ± 1.72	22.27±1.69	60.41 ± 0.47	29.39 ± 0.68	12.99 ± 0.31	20.68 ± 0.19	16.65 ± 0.20
LMTC	57.39 ± 2.89	40.01 ± 4.69	33.29 ± 3.81	58.75 ± 0.55	45.75 ± 0.55	23.24 ± 0.45	24.01 ± 0.25	47.31 ± 0.25
LMTC + Hungarian	57.79±3.67	43.85 ± 2.17	37.60 ± 2.84	58.98 ± 0.97	37.95 ± 0.58	23.16 ± 0.58	24.59 ± 0.87	47.02±2.49
TMSL	28.68 ± 1.25	12.02 ± 1.10	23.71 ± 1.08	69.33 ± 0.61	48.62 ± 0.54	21.34 ± 0.36	OOM	OOM
TMSL + Hungarian	68.40 ± 1.91	31.68 ± 0.92	25.28 ± 0.81	69.46 ± 0.58	28.16 ± 0.07	19.77±0.27	OOM	OOM
DSTL	39.59 ± 1.18	37.00 ± 0.00	23.41 ± 1.99	60.53 ± 0.55	29.05 ± 0.50	15.54 ± 0.33	11.64 ± 0.22	20.40 ± 0.15
DSTL + Hungarian	41.17 ± 1.62	40.46 ± 0.38	24.58 ± 1.13	54.13 ± 0.51	26.08 ± 0.23	14.05 ± 0.50	15.32 ± 0.29	42.34 ± 0.00
Ours	69.31 ± 1.32	61.20 ± 0.83	70.28 ± 0.55	85.34 ± 0.42	92.09 ± 0.00	30.27 ± 0.20	74.84 ± 0.94	75.50 ± 0.14

Evaluation Metric

(b) 3sources