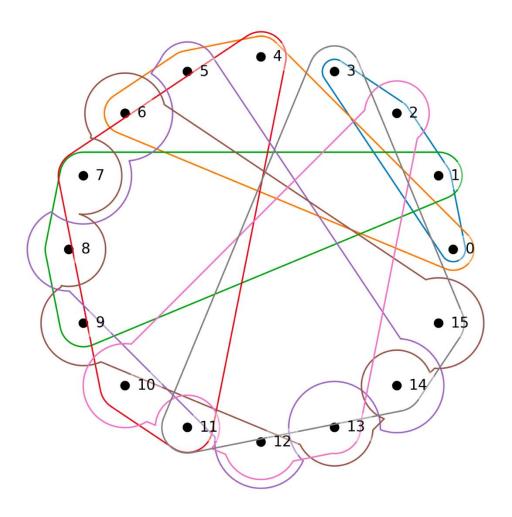
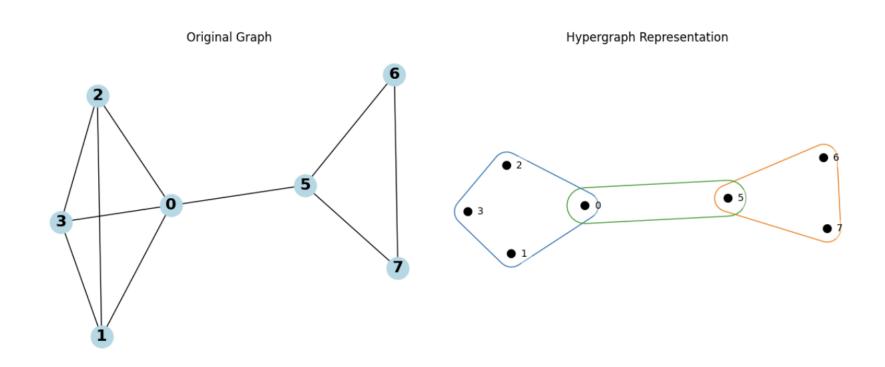

Higher-Order Learning with Graph Neural Networks via Hypergraph Encodings

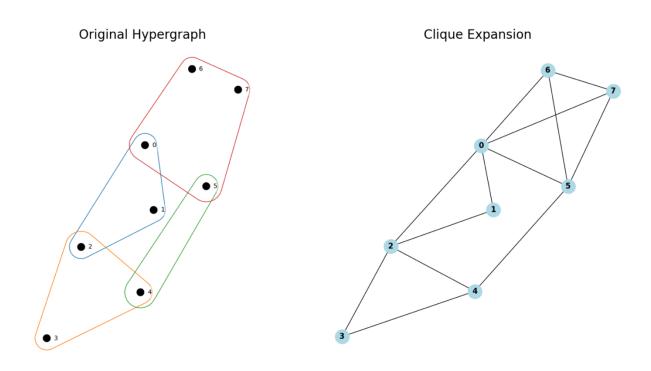
Raphael Pellegrin*, Lukas Fesser*, Melanie Weber Advances in Neural Information Processing Systems (NeurIPS 2025)


Graphs

Edges in a graph represent pairwise relations


Hypergraphs

Hyperedges can connect any number of nodes


Topological Architectures

Parametrizing higher-order relations via hypergraphs (lifting)

Topological Architectures

Parametrizing hypergraphs as graphs (clique expansion)

Topological Architectures

GNNs vs HNNs

To leverage hypergraph parametrizations in relational learning, we can define message-passing on hypergraphs. Is this the solution?

Graph Neural Networks (GNN)

$$x_v^{l+1} = \phi_l \left(\bigoplus_{p \in \mathcal{N}_v \cup \{v\}} \psi_l \left(x_p^l \right) \right)$$

Hypergraph Neural Networks (HNN)

$$h_e^{l+1} = \phi_1 \left(\left\{ x_j^l \right\}_{j \in e} \right)$$

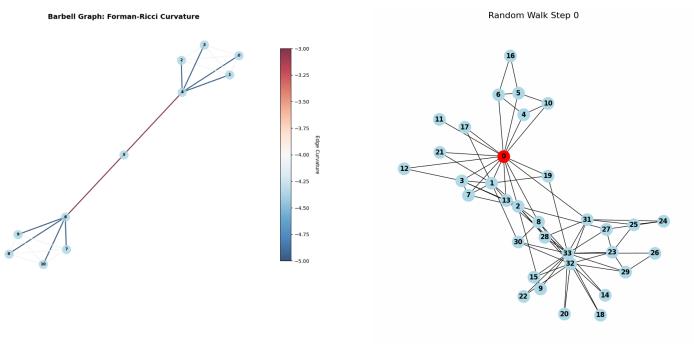
$$\tilde{x}_i^{l+1} = \phi_2 \left(x_i^l, \left\{ h_e^{l+1} \right\}_{e \in E_i} \right)$$

HNNs are two-phase schemes: Messages are passed from nodes to hyperedges and then back to nodes (Huang and Yang, 2021).

Topological Characterizations

GNN on clique expansion outperforms HNN

Model (Encodings)	citeseer-CC (\uparrow)	$cora-CA (\uparrow)$	$cora-CC (\uparrow)$	$\mathbf{pubmed\text{-}CC}\ (\uparrow)$	DBLP (†)
GCN (No Encoding)	69.28 ± 0.28	76.51 ± 0.82	75.43 ± 0.26	84.66 ± 0.49	75.66 ± 0.81
GCN (HCP-FRC)	$\textbf{71.03} \pm \textbf{0.51}$	78.43 ± 0.76	$\textbf{76.61} \pm \textbf{0.31}$	84.78 ± 0.57	76.49 ± 0.90
GCN (HCP-ORC)	70.89 ± 0.54	79.25 ± 0.81	76.09 ± 0.70	85.12 ± 0.61	76.57 ± 0.85
GCN (EE H-19-RWPE)	69.63 ± 0.71	76.84 ± 0.69	75.92 ± 0.28	86.24 ± 0.63	76.18 ± 0.88
GCN (EN H-19-RWPE)	68.85 ± 0.91	77.19 ± 0.64	75.33 ± 0.35	86.53 ± 0.61	76.76 ± 0.84
GCN (Hodge H-20-LAPE)	69.61 ± 0.45	$\textbf{79.61} \pm \textbf{0.85}$	75.62 ± 0.31	86.06 ± 0.52	$\textbf{77.48} \pm \textbf{0.93}$
GCN (Norm. H-20-LAPE)	69.13 ± 0.77	78.13 ± 0.79	76.18 ± 0.29	85.78 ± 0.55	76.92 ± 0.88
UniGCN (No Encoding)	63.36 ± 1.76	75.72 ± 1.16	71.10 ± 1.37	75.32 ± 1.09	71.05 ± 1.40
UniGCN (HCP-FRC)	61.20 ± 1.83	74.64 ± 1.45	68.98 ± 1.59	67.37 ± 1.73	71.02 ± 1.43
UniGCN (HCP-ORC)	61.81 ± 1.70	75.03 ± 1.33	70.42 ± 1.17	71.64 ± 1.52	70.69 ± 1.62
UniGCN (EE H-19-RWPEE)	63.29 ± 1.52	75.34 ± 1.28	71.13 ± 1.24	74.61 ± 1.18	71.21 ± 1.53
UniGCN (EN H-19-RWPEE)	63.09 ± 1.62	75.30 ± 1.37	71.21 ± 1.34	74.61 ± 1.09	71.26 ± 1.47
UniGCN (Hodge H-20-LAPE)	63.46 ± 1.58	75.64 ± 1.37	71.31 ± 1.19	75.37 ± 1.01	70.71 ± 1.61
UniGCN (Norm. H-20-LAPE)	63.41 ± 1.61	75.55 ± 1.48	71.20 ± 1.24	75.30 ± 1.01	71.10 ± 1.33


Enhancing Representational Power of GNNs

Can we endow GNNs with additional structure? Yes!

Data Augmentation: Encodings computed at the graph level

Structural (SE) and Positional (PE) encodings endow GNNs with information that it cannot learn on its own.

- Graph Laplacian
- Substructure counts
- Node degrees
- Discrete curvature
- Random walks statistics

Hypergraph-level Encodings

H-Encodings are more expressive than G-Encodings


How to best leverage higher-order relational information?

Augment graph with structural information, computed at the hypergraph-level.

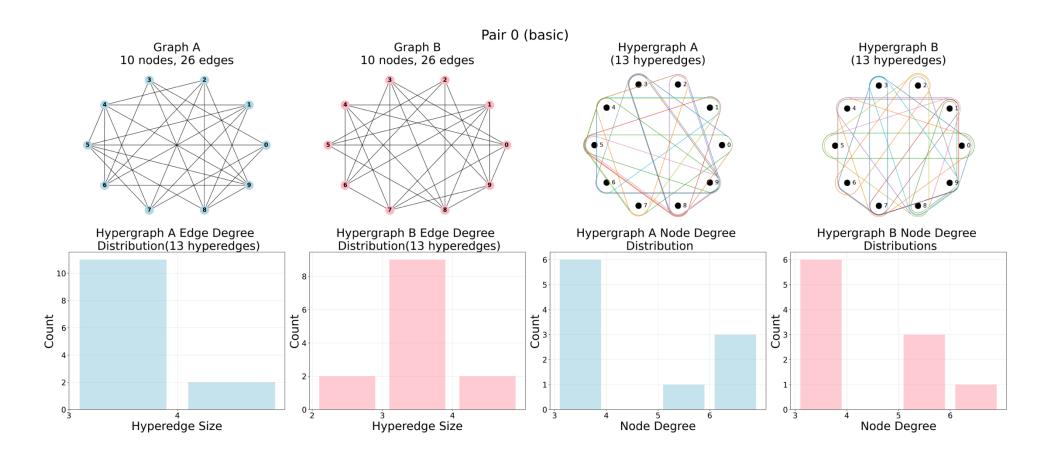
1. Eigenvectors of the Hodge Laplacian (H-LAPE)

$$H_0 = B_1^T B_1$$

$$(B_1)_{i,j} = \begin{cases} 1 \text{ if } i \prec j \\ 0 \text{ otherwise} \end{cases} \in \mathbb{R}^{V \times E}$$

- 2. Hypergraph curvature (H-LCP)
- 3. Hyper-degree profiles (H-LDP)
- 4. Hypergraph random walk statistics (H-RWPE)

Hypergraph-level Encodings


H-Encodings provide additional boost to GNNs compared to G-Encodings

Model (Encodings)	Collab (\uparrow)	$\mathbf{Imdb}\ (\uparrow)$	$\textbf{Reddit} \ (\uparrow)$
GCN (No Encoding)	61.94 ± 1.27	48.10 ± 1.02	67.87 ± 1.38
GCN (LCP-FRC)	68.36 ± 1.13	63.42 ± 1.47	79.53 ± 1.62
GCN (LCP-ORC)	70.48 ± 0.97	67.93 ± 1.55	80.75 ± 1.54
GCN (19-RWPE)	49.63 ± 2.38	50.41 ± 1.26	78.93 ± 1.60
GCN (20-LAPE)	58.33 ± 1.64	48.82 ± 1.31	77.26 ± 1.58
GCN (HCP-FRC)	$\textbf{72.03} \pm 0.51$	64.64 ± 0.88	82.09 ± 0.58
GCN (HCP-ORC)	70.82 ± 0.68	66.16 ± 0.75	80.35 ± 0.72
GCN (EE H-19-RWPE)	69.63 ± 0.71	$\textbf{73.96} \pm \textbf{0.65}$	82.79 ± 0.62
GCN (EN H-19-RWPE)	68.85 ± 0.91	73.84 ± 0.48	83.30 ± 0.79
GCN (Hodge H-20-LAPE)	69.61 ± 0.45	71.38 ± 0.75	79.46 ± 0.82
GCN (Norm. H-20-LAPE)	69.13 ± 0.77	71.05 ± 0.82	80.08 ± 0.67

GNN with G-Encodings vs. H-Encodings

Hypergraph-level Encodings

H-Encodings are more expressive than G-Encodings

Thank you!

https://arxiv.org/abs/2502.09570

