PoE-World: Compositional World Modeling with Products of Programmatic Experts

Wasu Top Piriyakulkij¹, Yichao Liang², Hao Tang¹, Adrian Weller^{2,3}, Marta Kryven⁴, Kevin Ellis¹

¹Cornell University, ²University of Cambridge, ³The Alan Turing Institute, ⁴Dalhousie University

Neurips 2025 (Spotlight)

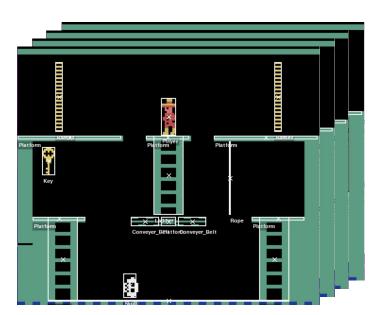
Check out the project website!

Link: https://topwasu.github.io/poe-world

We made a one-minute video that shows our agent in-action!

World Modeling of a POMDP environment

Past observations s_{1:t}

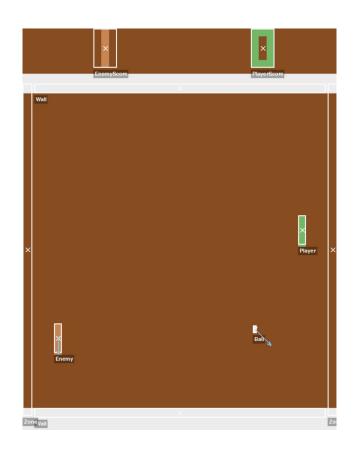


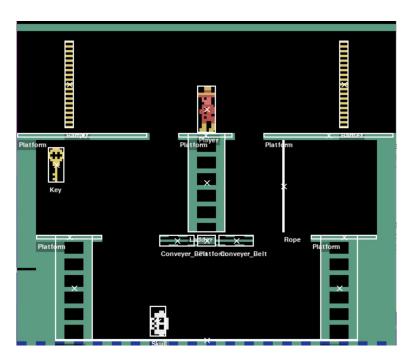
Next observation s_{t+1}

Action a

We want to infer $p(s_{t+1} | s_{1:t}, a)$

Domain – OCAtari





World modeling as an optimization problem

We can see world modeling as an optimization problem

$$p_{model}^* = \underset{p_{model}}{\operatorname{arg\,min}} \sum_{(o_{1:T+1}, a_{1:T}) \in D} \sum_{t=1}^{I} \ell(p_{model}; o_{1:t+1}, a_{1:t})$$

where I is a loss

p_{model} could be symbolic programs or parametric neural networks

Programmatic (Symbolic) World Models

 $\mathbf{p}_{\text{model}}$ as symbolic programs

Pros:

- Strong generalization
- Very sample efficient

Cons:

- Not flexible
 - Have only been shown to work on gridworld domains

Baseline: Direct Code Synthesis (w/ refinement)

Direct code synthesis approach

- Search in a space of symbolic programs (p_{model} are programmatic)
- Use 0-1 loss

Baseline: Direct Code Synthesis (w/ refinement)

Direct code synthesis approach

- Search in a space of symbolic programs (p_{model} are programmatic)
- Use 0-1 loss
- Use LLMs as search heuristics

Direct Code Synthesis (w/ refinement): Problems

- 2D video games, and all domains more complex than gridworlds, are very noisy, and
 0-1 loss only rewards perfect prediction
 - **Solution**: We want **stochastic world models** with log likelihood loss, even when the environment is deterministic

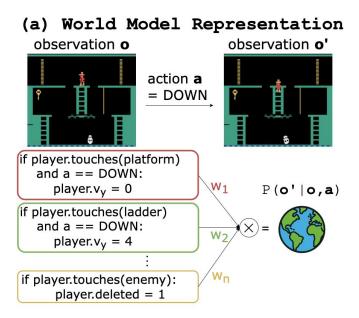
Direct Code Synthesis (w/ refinement): Problems

- 2D video games, and all domains more complex than gridworlds, are very noisy, and
 0-1 loss only rewards perfect prediction
 - **Solution**: We want **stochastic world models** with log likelihood loss, even when the environment is deterministic
- Problems with trying to find a monolithic code that explains everything
 - Face with a big combinatorial search space
 - Grow exponentially with the size of the programs
 - Hard to perform targeted, local modifications
 - With big, complex code, it's hard to perform targeted modifications
 - Solution: We want modular world models

PoE-World

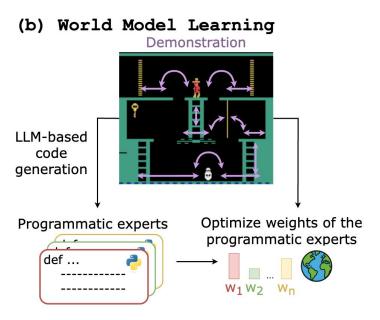
- Our solution to those problems
 - Decompose the problem of learning a world program into learning hundreds of small programs
 - Each of these learned programs encodes a different causal law
 - We probabilistically aggregate to predict future observations
 - Turning a set of pretty deterministic experts into a complex, stochastic world model

PoE-World: New representation



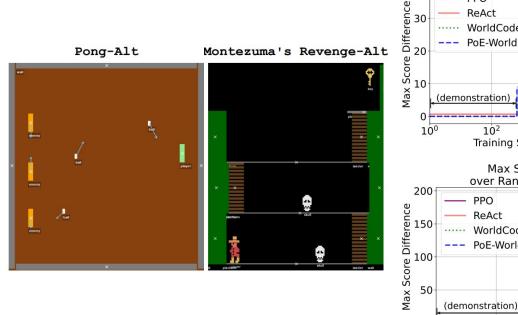
$$p_{\boldsymbol{\theta}}(o_{t+1}|o_{1:t}, a_{1:t}) \propto \prod_{i} p_{i}^{expert}(o_{t+1}|o_{1:t}, a_{1:t})^{\theta_{i}}$$

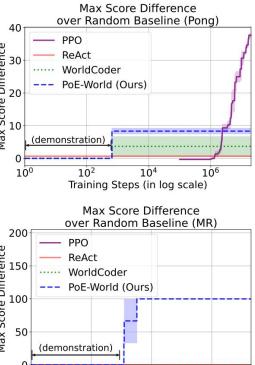
PoE-World: Learning



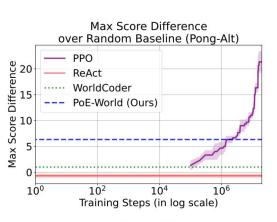
$$\theta^* = \underset{\theta}{\operatorname{arg\,max}} \sum_{(o_{1:T+1}, a_{1:T}) \in D} \sum_{t=1} \log p_{\theta}(o_{t+1}|o_{1:t}, a_{1:t})$$

Results





Training Steps (in log scale)





Lessons Learned

- Modularity is great makes things much more scalable
- Stochastic approximation of complex, deterministic environment is great

Lessons Learned

- Modularity is great makes things much more scalable
- Stochastic approximation of complex, deterministic environment is great
- Low-level world models can only get us so far
 - Planning is hard with low-level world models
 - We need abstraction
- Symbolic world models can only get us so far
 - Symbolic state assumption: not everything is nice objects
 - This work relies heavily on object contacts
 - We need more flexibility to capture fine-grained details (Neurosymbolic)

Thank you!