

SCOPE: Saliency-Coverage Oriented Token Pruning for Efficient Multimodel LLMs

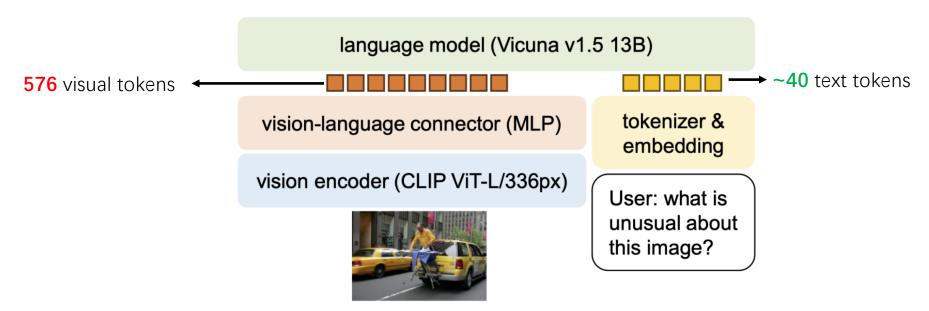
Jinhong Deng^{1,3,4}, Wen Li²*, Joey Tianyi Zhou^{3,4}, Yang He^{3,4}

¹University of Electronic Science and Technology of China (UESTC)

²Shenzhen Institute for Advanced Study, UESTC

³CFAR, Agency for Science, Technology and Research (A*STAR), Singapore

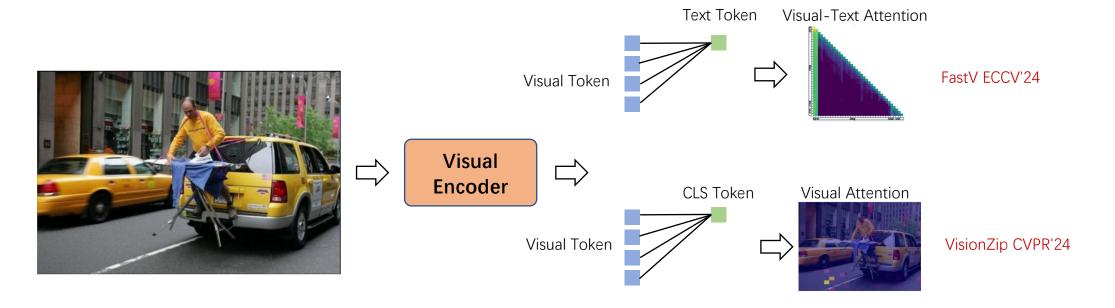
⁴IHPC, Agency for Science, Technology and Research (A*STAR), Singapore



Jinhong Deng

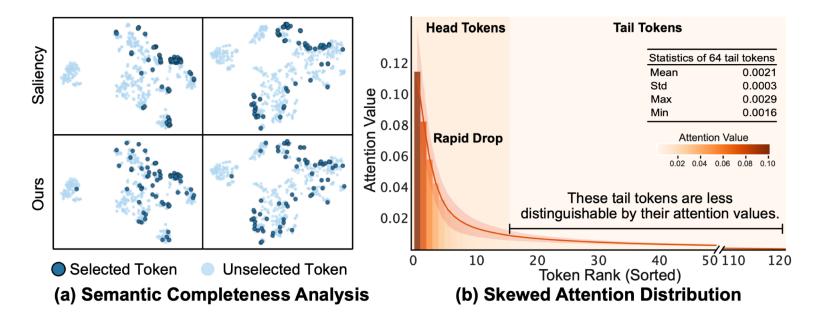
CREATING GROWTH, ENHANCING LIVES

Mativation	SCOPE			Experiment Results		
Motivation	Coverage Analysis Saliency-Coverage Oriented Token Pruning		Main Results	Analysis	Visualization	

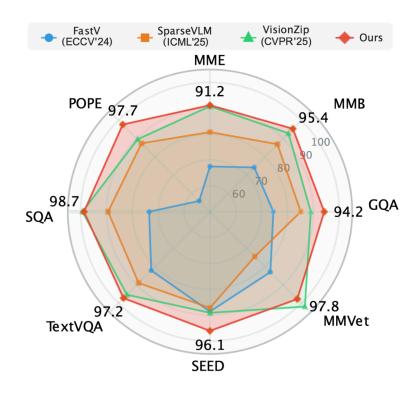

Vision Language Model

Are all visual tokens necessary?

Motivation		SCOPE	Experiment Results			
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	


Visual Token Compression

Tokens with high saliency scores (text/vision attention) are retained


Motivation		SCOPE	Experiment Results			
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

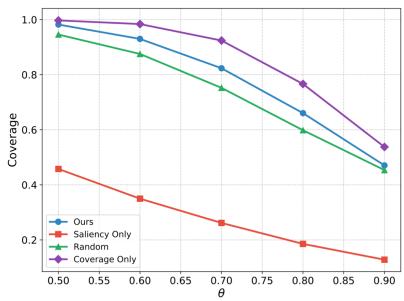
Limitations of Saliency-Based Methods

Mativation		SCOPE	Experiment Results			
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Our Results

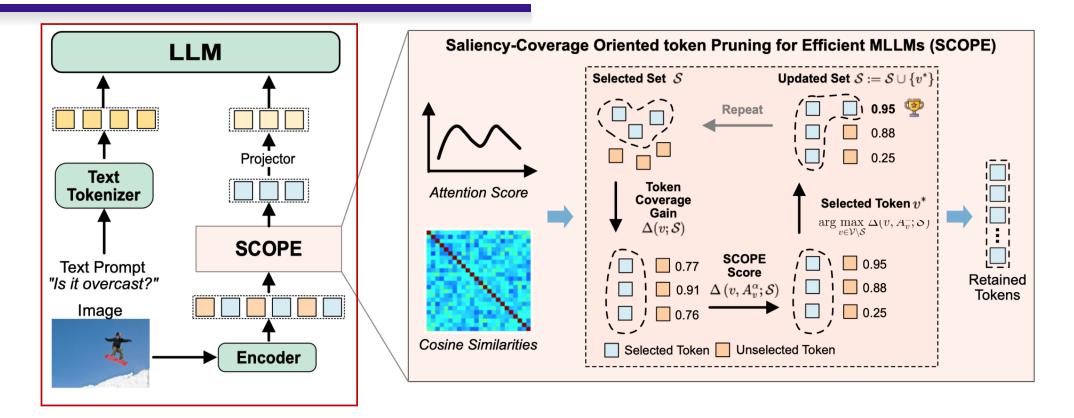
- Better Performance at same token budget.
- Token reduction while maintain performance.
- Generalizability on LLaVA-1.5, LLaVA-NeXT and Video-LLaVA.

Motivation	SCOPE			Experiment Results		
Monvanon	Coverage Analysis Saliency-Coverage Oriented Token Pruning		Main Results	Analysis	Visualization	

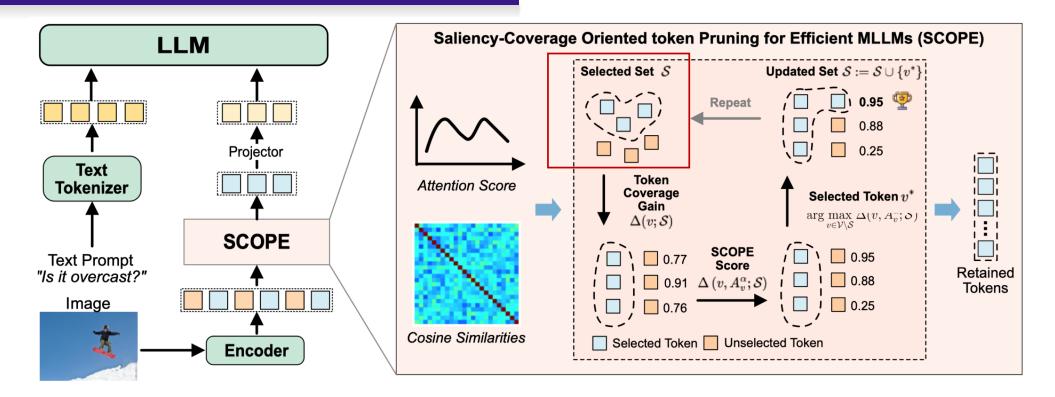

Coverage Analysis

θ-Coverage Definition

$$\operatorname{sim}(v, v') := \frac{v^{\top}v'}{\|v\| \cdot \|v'\|} \ge \theta$$

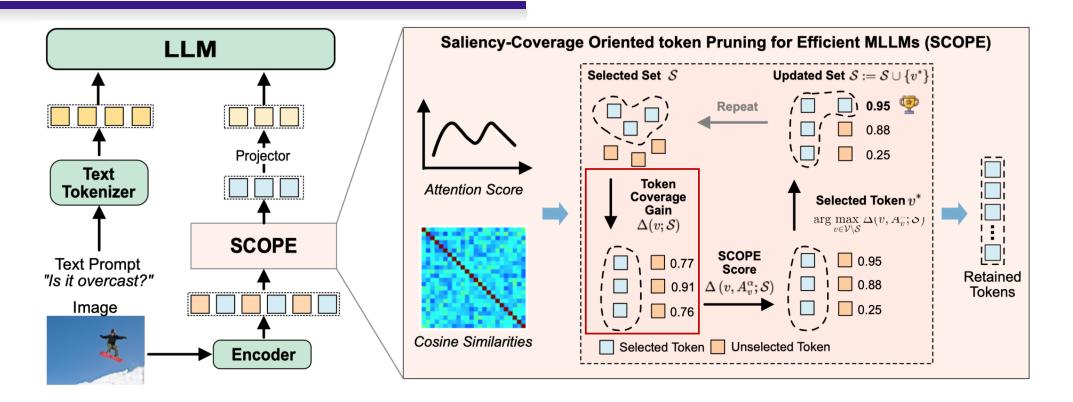

$$\mathsf{Coverage}_{\theta}(\mathcal{V}',\mathcal{V}) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{I}\left(\max_{v' \in \mathcal{V}'} \mathsf{sim}(v,v') \geq \theta\right)$$

Saliency Only Exhibits Low Coverage


Saliency-based method captures dominant information, it tends to overlook a substantial amount of semantic content.

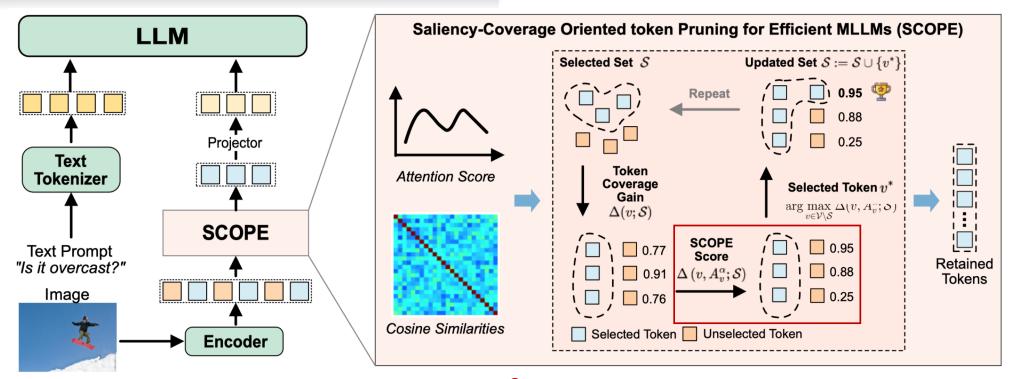
Motivation	SCOPE			Experiment Results		
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Reduce tokens before LLM


Motivation	SCOPE			Experiment Results		
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Set-coverage for selected tokens

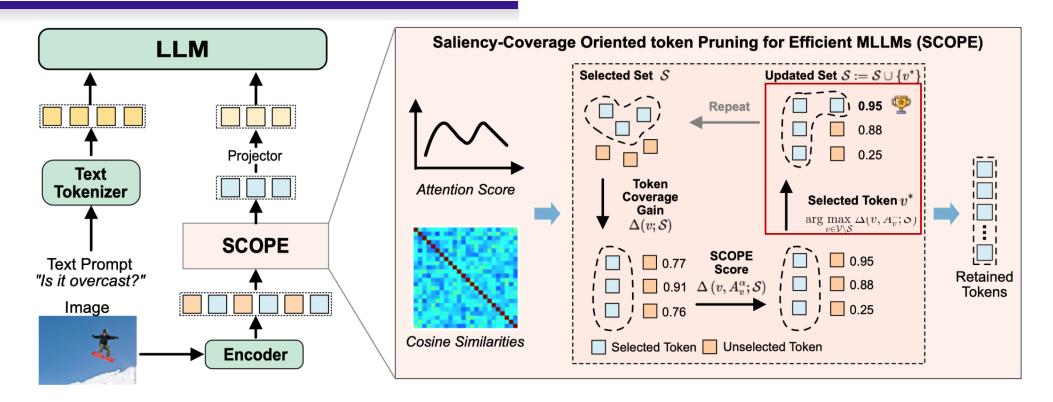
$$f(\mathcal{S}) = \sum_{u \in \mathcal{V}} C(u, \mathcal{S}) = \sum_{u \in \mathcal{V}} \max_{s \in \mathcal{S}} \text{sim}(u, s)$$


Motivation	SCOPE			Experiment Results		
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Token-coverage Gain
$$\Delta(v;\mathcal{S}) = f(\mathcal{S} \cup \{v\}) - f(\mathcal{S})$$

how much additional coverage is achieved by selecting token v.

Motivotion	SCOPE			Experiment Results		
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	



Coverage

SCOPE score
$$\Delta(v,A^{lpha}_v;\mathcal{S}) = \Delta(v;\mathcal{S}) \cdot A^{lpha}_v$$
 Saliency

Integration of saliency and coverage gain.

Motivation	SCOPE			Experiment Results		
Motivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Selected token $v^* \in \arg\max_{v \in \mathcal{V} \setminus \mathcal{S}} \Delta(v, A_v^{\alpha}; \mathcal{S})$ SCOPE score

Motivation		SCOPE	Experiment Results			
Iviotivation	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Results on LLaVA-1.5 7B

Method	GQA	MMB	MME	POPE	SQA	TextVQA	SEED	MMVet	Avg.	
		Upper B	Sound, 5'	76 Tokens	s (100%)					
Vanilla (CVPR'24)	61.9	64.7	1862	85.9	69.5	58.2	58.6	31.1	100%	
vaiiiia (GVPR 24)	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Retain 192 Tokens (↓ 66.7%)										
FastV (ECCV'24)	52.7	61.2	1612	64.8	67.3	52.5	57.1	27.7	89.5%	
Tast v (ECCV-24)	85.1%	94.6%	86.6%	75.4%	96.8%	90.2%	97.4%	89.7%	69.570	
SparseVLM (ICML, 25)	57.6	62.5	1721	83.6	69.1	56.1	55.8	31.5	96.5%	
Sparse v Livi (10mL 25)	93.1%	96.6%	92.4%	97.3%	99.4%	96.4%	95.2%	101.3%	90.570	
VisionZip (CVPR'25)	59.3	63.0	1783	85.3	68.9	57.3	56.4	31.7	98.0%	
VISIOIIZIP (CVPR-25)	95.8%	97.4%	95.7%	99.3%	99.1%	98.5%	96.2%	101.9%	96.0%	
PDrop (CVPR, 25)	57.1	63.2	1766	82.3	70.2	56.1	54.7	30.5	96.2%	
PDrop (CVPR'25)	92.2%	97.7%	94.8%	95.8%	101.0%	96.4%	93.3%	98.1%	90.2%	
Ours	60.1	63.6	1804	86.4	68.8	57.7	58.7	32.5	99.5% (\(\psi \ 0.5\%)	
Ours	97.1%	98.3%	96.9%	100.6%	99.0%	99.1%	100.2%	104.5%	99.5% (\$ 0.5%)	
		Retain	128 Tol	kens (↓ 7	7 .8%)					
EastM (names)	49.6	56.1	1490	59.6	60.2	50.6	55.9	28.1	84.4%	
FastV (ECCV'24)	80.1%	86.7%	80.0%	69.4%	86.6%	86.9%	95.4%	90.4%		
Smarra VI M (zmr. 105)	56.0	60.0	1696	80.5	67.1	54.9	53.4	30.0	93.3%	
SparseVLM (ICML'25)	90.5%	92.7%	91.1%	93.7%	96.5%	94.3%	91.1%	96.5%	93.3%	
Vision7in (mmp.cos)	57.6	62.0	1761.7	83.2	68.9	56.8	54.9	32.6	96.9%	
VisionZip (CVPR'25)	93.1%	95.8%	94.6%	96.9%	99.1%	97.6%	93.7%	104.8%	96.9%	
DD ()†	56	61.1	1664	82.3	69.9	55.1	53.3	30.8	04.40	
PDrop (CVPR, 25)	90.5%	94.4%	89.4%	95.8%	100.6%	94.7%	91.0%	99.0%	94.4%	
0	59.7	62.5	1776	86.1	68.4	57.2	57.8	31.4	00 107 (1 1 007)	
Ours	96.4%	96.6%	95.4%	100.2%	98.4%	98.3%	98.6%	101.0%	98.1% (\ 1.9%)	
		Retair	n 64 Tok	ens (\ 88	3.9 %)					
EastM (manus)	46.1	48.0	1256	48	51.1	47.8	51.9	25.8	74.9%	
FastV (ECCV'24)	74.5%	74.2%	67.5%	55.9%	73.5%	82.1%	88.6%	83.0%	74.9%	
C>///)// ()	52.7	56.2	1505	75.1	62.2	51.8	51.1	23.3	05 10	
SparseVLM (ICML'25)	85.1%	86.9%	80.8%	87.4%	89.5%	89.0%	87.2%	74.9%	85.1%	
T. (55.1	60.1	1690	77.0	69.0	55.5	52.2	31.7	93.5%	
VisionZip (CVPR'25)	89.0%	92.9%	90.8%	89.6%	99.3%	95.4%	89.1%	101.9%		
DD ()t	41.9	33.3	1092	55.9	69.2	45.9	40.0	30.7	,	
PDrop (CVPR, 25)	67.7%	51.5%	58.6%	65.1%	99.6%	78.9%	68.3%	98.7%	73.5%	
0	58.3	61.7	1698	83.9	68.6	56.6	56.3	30.4	06.000 (1.4.000)	
Ours	94.2%		91.2%	97.7%	98.7%	97.3%	96.1%	97.7%	96.0% (\(\pm 4.0\%)	

Motivation	SCOPE			Experiment Results		
	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Results on LLaVA-Next 7B

Method	GQA	MMB	MME	SQA	TextVQA	MMMU	Avg.	
Upper Bound, 2880 Tokens (100%)								
Vanilla (CVPR'24)	64.2	67.9	1842	70.2	61.3	35.1	100%	
vaiiiia (CVPR'24)	100%	100%	100%	100%	100%	100%	100%	
Retain 640 Tokens (\$\psi\$ 77.8%)								
SparseVLM (ICML'25)	60.3	65.7	1772	67.7	57.8	34.6	96.0%	
Sparse v Livi (10ML 25)	93.9%	96.8%	96.2%	96.4%	94.3%	98.6%	90.0%	
Vision 7 in (gypp 105)	61.3	66.3	1787	68.1	60.2	34.7	97.4%	
VisionZip (CVPR'25)	95.5%	97.6%	97.0%	97.0%	98.2%	98.9%	97.4%	
Our	61.9	66.2	1842	67.8	60.1	36.9	00 00 (1 107)	
Ours	96.4%	97.5%	100.0%	96.6%	98.0%	105.1%	98.9% (\downarrow 1.1%)	
	·	Reta	in 320 Tol	cens (↓ 88	8.9%)			
SparseVLM (ICML'25)	57.7	64.3	1694	67.3	55.9	34.4	93.6%	
Sparse v Livi (10ML/25)	89.9%	94.7%	92.0%	95.9%	91.2%	98.0%	93.0%	
Vision 7 in (gypp 105)	59.3	63.1	1702	67.3	58.9	35.3	95.0%	
VisionZip (CVPR'25)	92.4%	92.9%	92.4%	95.9%	96.1%	100.6%	93.0%	
Ours	61.0	65.9	1789	67.7	58.4	35.6	97.1% (\psi 2.9%)	
Ours	95.0%	97.1%	97.1%	96.4%	95.3%	101.4%	97.1% (\$\frac{2.9}{0}\$)	
	'	Reta	in 160 Tol	cens (↓ 9 4	1.4 %)			
SparseVLM (ICML'25)	51.2	63.1	1542	67.5	46.4	32.8	86.9%	
Sparse v Livi (10ML/25)	79.8%	92.9%	83.7%	96.2%	75.7%	93.4%	80.9%	
Vision 7 in (gunn 157)	55.5	60.1	1630	68.3	56.2	36.1	92.5%	
VisionZip (CVPR'25)	86.4%	88.5%	88.5%	97.3%	91.7%	102.8%	92.3%	
Ouro	60.0	64.3	1700	67.4	56.8	35.6	05 10% (4 00%)	
Ours	93.5%	94.7%	92.3%	96.0%	92.7%	101.4%	95.1% (\downarrow 4.9%)	

Motivation	SCOPE			Experiment Results		
	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Table 3: Performance comparison on Video-LLaVA. The original Video-LLaVa's video token number is 2048, while our method only retains the 136 tokens.

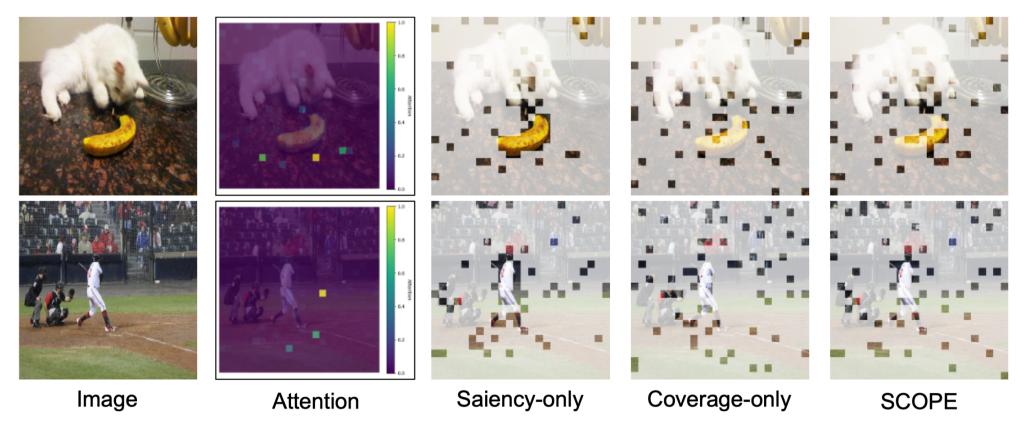
Method	TGIF	MSVD	MSRVTT	ActivityNet	Avg	
Video-LLaVA	47.1	69.8	56.7	43.1	100.0%	
FastV	23.1	38.0	19.3	30.6	52.1%	
rastv	49.0%	54.4%	34.0%	71.0%	32.170	
SparseVLM	44.7	68.2	31.0	42.6	86.5%	
Sparse v Livi	94.9%	97.7%	54.7%	98.8%		
VisionZip	42.4	63.5	52.1	43.0	93.2%	
VISIOIIZIP	90.0%	91.0%	91.9%	99.8%	93.270	
Ours	47.1	69.2	55.9	44.9	100.5%	
Ours	100.0%	99.1%	98.6%	104.2%	100.5%	

Results on Video-LLaVA

Table 4: Ablation studies of the proposed method.

	GQA	MMB	MME	POPE	TextVQA
Random	55.5	54.0	1556	75.2	48.4
Saliency-only	55.0	60.8	1665	76.8	55.4
Coverage-only	58.1	60.8	1687	82.1	56.3
Ours	58.3	61.7	1698	83.9	56.6

Ablation Studies

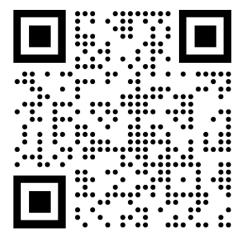

Table 5: Efficiency analysis of our method on LLaVA-NeXT 7B. The experiments are conducted on a system equipped with $4\times A100$. Δ denotes the reduction ratio.

	Token Number	POPE	Latency (s)	Δ
Vanilla PDrop	2880 160	86.4 53.2	601.9 184.0	- 3.3×
Ours	160	81.3	188.8	$3.2\times$

Efficiency Analysis

Motivation	SCOPE			Experiment Results		
	Coverage Analysis	Saliency-Coverage Oriented Token Pruning	Main Results	Analysis	Visualization	

Visualization of token pruning among different pruning strategies



www.a-star.edu.sg