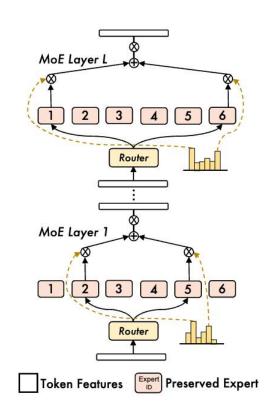
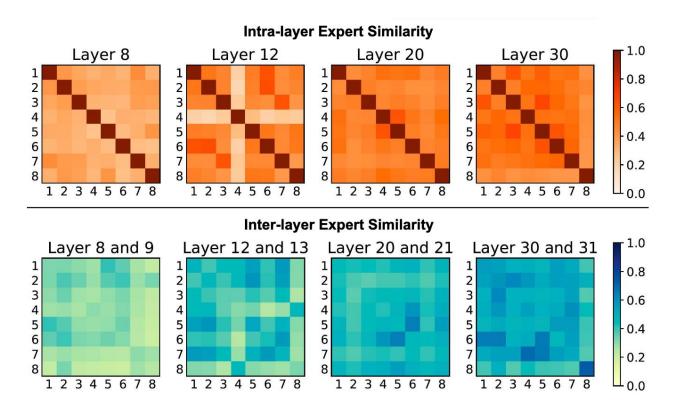

DiEP: Adaptive Mixture-of-Experts Compression through Differentiable Expert Pruning

Paper ID: 17474

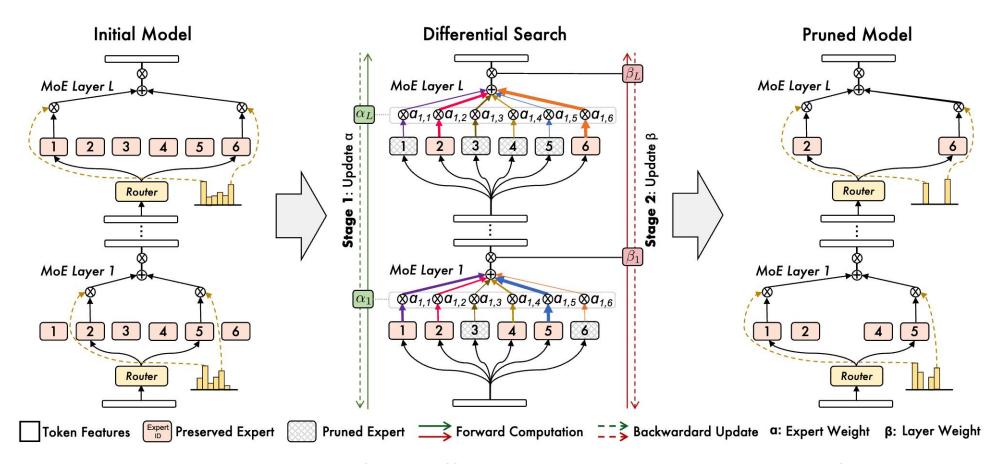

Sikai Bai (Presenter), Haoxi Li, Jie Zhang, Zicong Hong, Song Guo


- Motivation
- Our approach
- Experiments

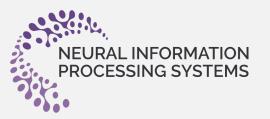

- Motivation
- Our approach
- Experiments

Motivation

Mixture of Expert


Varying expert similarity across intra-layer and inter-layer.

- Motivation
- Our approach
- Experiments


Our approach

The schematic illustration of the Differentiable Expert Pruning (DiEP) framework.

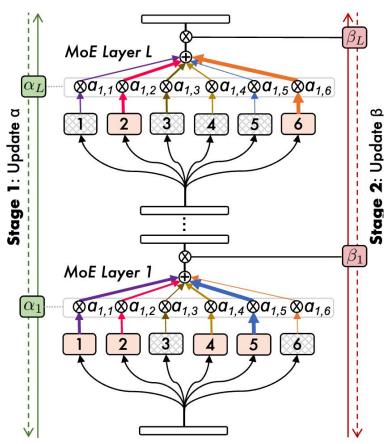
Our approach

Sparse Expert Search Space:

MoE layer is modeled as a directed acyclic graph (DAG) consisting of only two nodes.

- An input node representing the token representations entering the expert layer.
- An output node representing the sum of selected expert transformations.

Continuous Relaxation and Optimization:

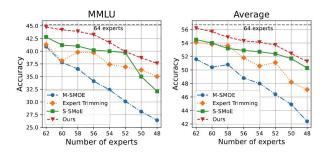

Pruning Strategy.

$s_i^{(l)} = \alpha_i^{(l)} \cdot \beta^{(l)}.$

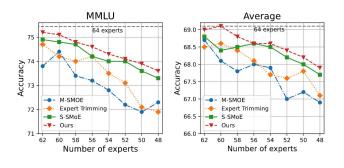
Adaptive Skipping During Inference:

- Assume experts with indices e_0 and e_1 are selected, with $w_{e1} < w_{e0}$.
- if $w_{e1} < \gamma w_{e0}$, expert e_1 is skipped, where $\gamma = \gamma_1 \times \gamma_2$.
- γ_1 is the median value of w_{e1}/w_{e0} across sampled calibration data for each MoE layer.
- y_2 is the ratio of the CKA similarity $\rho(y_{e0}, y_{e1})$ to the mean CKA similarity $\rho(y_{ei}, y_{ej})$ across all data samples in layer *l*.

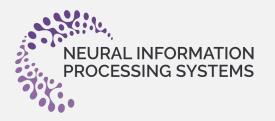
Differential Search



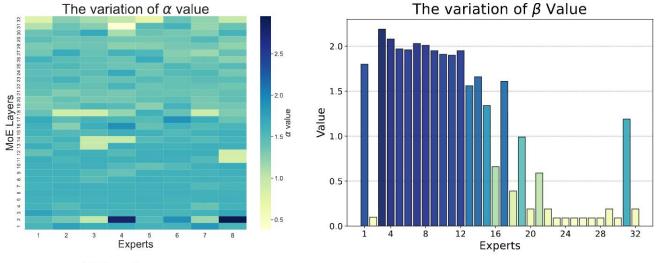
- Motivation
- Our approach
- Experiments


Experiments

Model	Method	MMLU				PasiO	OP1-04	DOE		
Model	r = 25%/50%	humanities	social science	stem	other	avg	BoolQ O	OpenBookQA	RTE	Average
	Full	60.5	77.8	58.9	74.2	67.9	85.3	35.4	71.5	65.1
	M-SMOE	51.8/24.8	60.5/26.5	46.9/24.7	60.5/25.0	54.9/25.3	82.6/39.9	32.0/11.6	70.4/50.9	60.0/31.9
Mixtral 8×7B	Expert Trimming	49.2/36.9	59.7/45.6	45.0/35.1	58.2/43.4	54.1/45.7	77.2/76.6	33.0/26.4	56.6/55.9	55.2/51.2
	NAEE	52.4/43.5	66.4/52.7	49.0/40.4	63.7/43.5	58.7/47.3	84.0/80.8	32.6/28.8	67.9/61.4	60.8/54.6
	S-MOE	56.0/48.0	73.1/57.0	52.4/43.3	68.2/54.6	59.9/50.8	86.4/83.3	31.4/26.2	69.3/67.1	61.5/55.9
	DiEP(Ours)	58.8/52.9	75.4/69.3	56.8/49.1	72.0/63.5	64.9/57.9	86.6/84.0	33.1/29.6	70.7/68.2	63.8/59.9
	Full	61.2	79.7	59.6	75.8	68.1	88.5	36.6	72.2	66.4
M: 4 10 7D	M-SMOE	48.5/33.8	62.3/37.5	44.0/33.8	55.3/35.4	52.0/35.0	85.3/77.6	29.0/26.4	67.5/61.8	58.5/50.2
Mixtral 8×7B	Expert Trimming	52.9/45.0	74.3/61.1	50.5/39.2	64.8/50.8	58.6/47.3	86.3/83.0	37.0/32.3	63.2/66.8	61.3/57.3
-Instruct	NAEE	55.9/48.7	69.5/55.6	54.1/42.3	68.7/56.2	62.4/52.8	87.3/84.8	35.6/30.4	70.0/ 75.5	63.8/60.9
	DiEP(Ours)	61.2/55.1	78.1/72.3	59.4/53.4	73.8/67.8	67.3/61.3	87.7/85.6	35.9/31.0	72.2 /74.0	65.8/63.0
	Full	68.6	84.1	67.1	78.7	72.6	87.9	35.8	71.5	67.0
Mixtral 8×22B	M-SMOE	27.3/22.7	25.4/25.8	24.4/24.0	27.9/23.4	26.4/23.9	62.8/62.7	12.8/13.0	54.2/49.5	39.1/37.3
	Expert Trimming	58.0/45.7	74.9/57.7	54.1/42.0	70.2/45.7	64.3/47.8	81.5/74.4	35.2/27.0	69.3/57.4	62.6/51.7
	NAEE	60.4/53.9	78.0/67.2	59.5/52.3	73.0/64.2	67.7/59.4	87.4/80.5	35.0/31.1	70.1/67.9	65.1/59.7
	S-MOE	62.3/57.8	78.5/69.7	60.2/51.3	73.4/64.2	68.6/60.8	87.6/83.1	35.8 /33.2	71.1/68.1	65.7/61.3
	DiEP(Ours)	65.0/58.9	81.8/73.2	63.2/54.2	76.0/68.7	70.7/62.4	87.7/84.5	35.8/34.4	71.3/70.4	66.4/62.9


(a) Deepseek-MoE-16B.

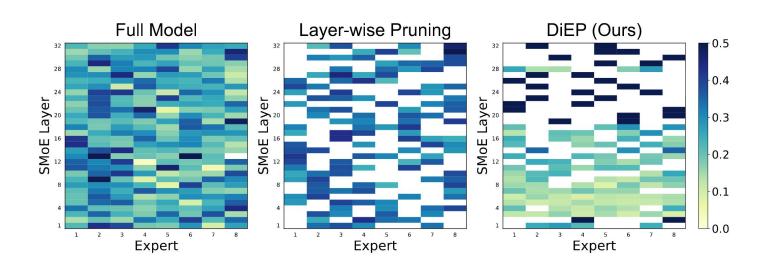
(b) Qwen2-57B-14A.


Zero-shot performance comparison on five advanced MoE models across various NLP tasks.

Experiments

Method	MMLU	BoolQ	OpenBookQA	RTE	Avg.
Baseline	58.7/47.3	84.0/80.8	32.6/28.8	67.9/61.4	60.8/54.6
W_{lpha}	60.5/51.0	86.0/82.8	32.2/27.8	67.5/65.3	61.6/56.7
W_eta	61.0/51.4	85.1/83.3	32.0/29.6	67.3/66.2	61.3/57.6
$W_{\alpha} + W_{\beta}(random)$	57.6/49.2	85.6/83.4	32.3/27.2	66.4/62.1	60.47/55.5
$W_{lpha}+W_{eta}(1:2)$	55.1/46.2	81.5/77.4	30.6/26.8	66.4/64.2	57.8/54.2
$W_{lpha}+W_{eta}(2:1)$	63.3/54.2	85.4/83.5	32.6/29.8	68.2/67.5	62.4/58.8
$W_{lpha}+W_{eta}(3:1)$	64.6/55.2	85.9/84.2	32.8/29.6	69.7/67.8	63.3/59.2
DiEP(Ours)	64.9/57.9	86.6/84.0	33.1/29.6	70.7/68.2	63.8/59.9

Effectiveness of Components

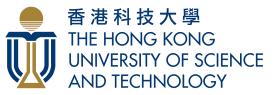


Visualization analysis of values distribution for intra-layer scores α and inter-layer scores β

(a) Intra-layer scores α . (b) Inter-layer scores β

Experiments

Distribution of expert activation frequencies in the Mixtral 8×7B.


Method	Mixtral 8×7B	Mixtral 8×22B	Deepseek-MoE-16B	Qwen2-57B-14A
NAEE	1.31h	1.57h	≈ 94000d	≈ 113000d
DiEP(Ours)	0.23h	0.31h	0.28h	0.34h

Pruning time comparison of our DiEP and NAEE on different models

r	Pruning	Skipping	Avg. Acc	Speedup ↑	GPU ↓
0%			65.1	1.00×	1.00 ×
0%		✓	64.1	$1.07 \times$	1.00 ×
25%	√		63.8	1.18×	0.76 ×
25%	✓	✓	63.3	1.21×	$0.76 \times$
50%	√		59.9	1.26×	0.52 ×
50%	✓	✓	59.6	1.28 ×	0.52 ×

Model	r	Pruning	Skipping	Avg. Acc	Speedup ↑	GPU ↓
	0%			56.2	1.00×	1.00 ×
	0%		✓	55.7	$1.04 \times$	$1.00 \times$
Deemark McE 16D	6.25%	\checkmark		54.8	$1.07 \times$	$0.95 \times$
Deepseek-MoE-16B	6.25%	\checkmark	\checkmark	54.4	$1.08 \times$	$0.95 \times$
	12.5%	\checkmark		54.1	1.11×	$0.89 \times$
	12.5%	\checkmark	\checkmark	53.6	1.13×	$0.89 \times$

Inference cost analysis on Mixtral 8×7B and Deepseek-MoE-16B after pruning

Thank you for listening!

Sikai Bai

Email: whitesk1973@gmail.com