

Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection

Yu Guo^{1,3}, Shengfeng He^{2,*}, Yuxu Lu⁴, Haonan An¹, Yihang Tao¹, Huilin Zhu⁵, Jingxian Liu^{3,*}, Yuguang Fang¹

¹City University of Hong Kong, ²Singapore Management University, ³Wuhan University of Technology, ⁴The Hong Kong Polytechnic University, ⁵Wuhan University of Science and Technology

Introduction PART 1

Content

PART 2 **Neptune-X: Active X-to-Maritime Generation**

PART 3 **Experimental Evaluation**

Conclusion PART 4

01 Introduction

Category

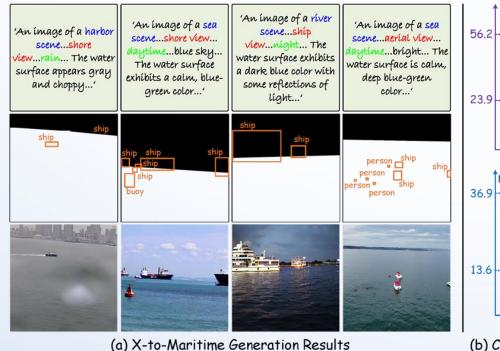
Ranking of ATDFs

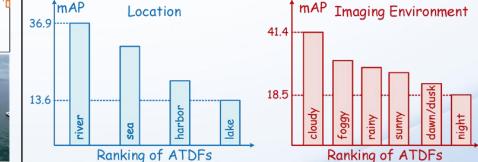
obj

View

Ranking of ATDFs

- Maritime object detection is essential for maritime applications but relies on scarce and costly annotated data.
- Models generalize poorly due to inherent imbalances in existing maritime datasets across conditions and object categories.

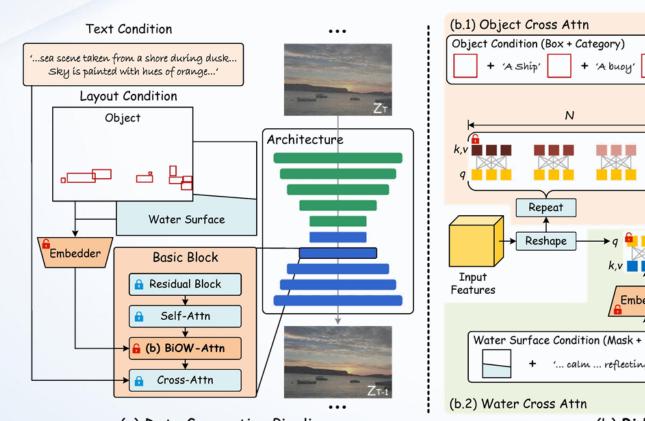


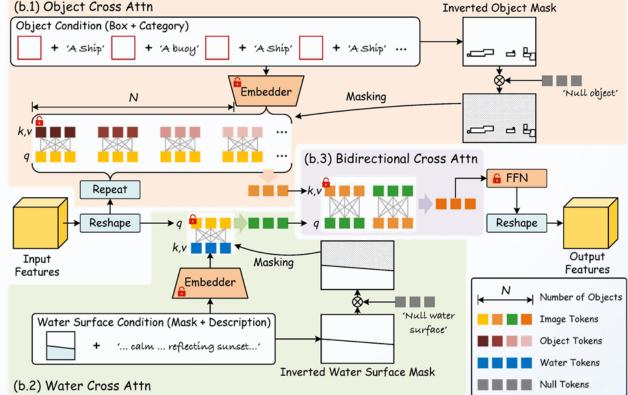


23.2

X-to-Maritime Generation

Objective Function $\rightarrow \mathcal{L} = \mathbb{E}_{z,t,\epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \left| \|\epsilon - g_{\theta}(z_t,t,\mathcal{C},\underbrace{\{\mathcal{C}_o^i,\mathcal{M}_o^i\}_{i=1}^O,\ \{\mathcal{C}_w,\mathcal{M}_w\}}_{})\|_2^2 \right|,$





(a) Data Generation Pipeline

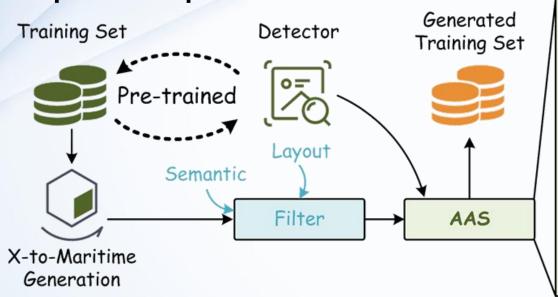
Bidirectional Object-Water Attention (BiOW-Attn) module, which explicitly models the interactions between objects and their aquatic surroundings to generate physically plausible and realistic maritime scenes.

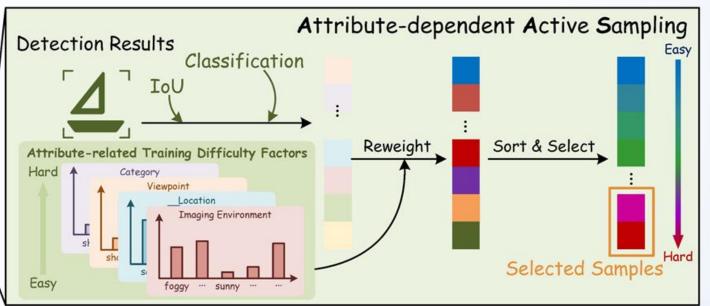
(b) Bidirectional Object-Water Attention

Conditional Injection

$$\begin{aligned} & \text{Cross-Att}(Q, K_k, V_k) = \text{Softmax}\left(\frac{Q \cdot K_k^\top}{\lambda}\right) V_k, \quad k \in \{\mathcal{C}_o^i, \mathcal{C}_w\}, \\ & \mathbf{F}_o = \left(\sum_{i=1}^O f_o^i\right) \odot \mathbf{M} + \mathbf{null}_{\text{obj}} \odot (1 - \mathbf{M}), \quad \text{where } \mathbf{M} = \bigcup_{i=1}^O \mathcal{M}_o^i. \end{aligned}$$

Neptune-X Pipeline





Attribute-correlated Training Difficulty Factors

$$d_s^j = \frac{1}{N_s^j} \sum_{n=1}^{N_s^j} (1 - Acc_n).$$

Exponential Moving Average

Comprehensive Consideration

Imaging Environment Category

Training Difficulty

$$d = \delta \prod_{\alpha \in A} d_{\alpha} \cdot \frac{1}{N} \sum_{n=1}^{N} d_{\text{cls}}^{n} \cdot (1 - \text{Acc}_{n}),$$

03 Experimental Evaluation

Maritime Generation Dataset

Table 1: Data source of MGD.

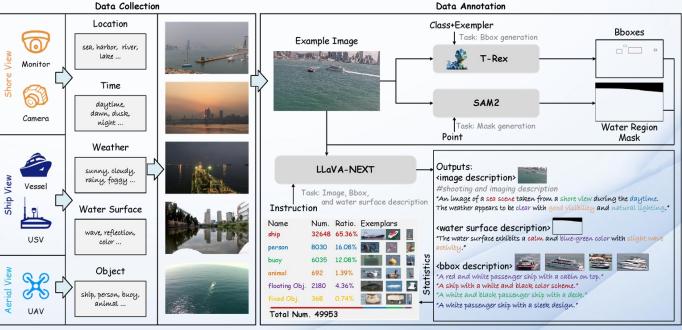
Source	Imaging Viewpoint	Num.
MaSTr1325 [3]	ship view	800
USVInland [6]	ship view	1000
MIT Sea Grant [9]	ship view	100
SMD [24]	shore and ship view	400
Seaships [33]	shore view	1500
Seagull [29]	aerial view	2996
Fvessel [12]	shore view	1500
LaRS [52]	shore, ship, and aerial view	1973
Others	shore, ship, and aerial view	1631
MGD	shore, ship, and aerial view	11900

Figure 7: The percentages of various dimensions and attributes in our MGD dataset.

Table 7: Sample numbers and percentages of various dimensions and attributes.

Dimensions	Attributes	Number	Proportion
	ship	29313	72.44%
Category	buoy	5326	13.16%
	person	4843	11.97%
	floating obj.	618	1.53%
	fixed obj.	366	0.90%
	shore	6042	50.77%
View	ship	2459	20.66%
	aerial	3399	28.56%
	sea	5829	48.98%
Location	river	5531	46.48%
Location	harbor	282	2.37%
	lake	258	2.17%
Imaging Environment	sunny	6491	54.55%
	cloudy	2794	23.48%
	foggy	1225	10.29%
	rainy	515	4.33%
	dawn/dusk	583	4.90%
	night	292	2.45%

Data Annotation



03 Experimental Evaluation

Data Generation Results

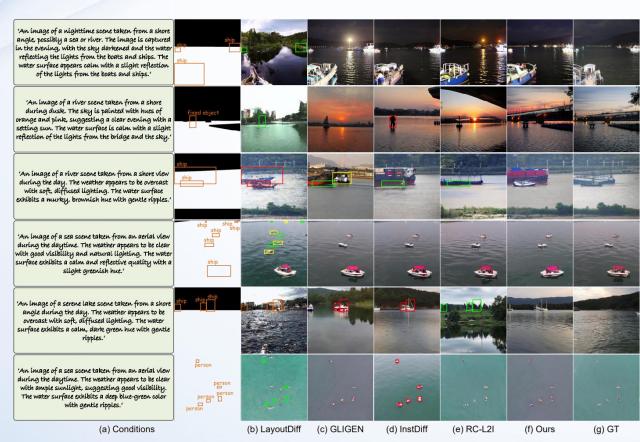


Figure 4: Comparison of image generation on MGD. The red, green, and yellow bounding boxes Figure 11: Image generation cases using (a) different random seeds and (b) only removing text indicate low-quality/incorrect generation, missed generation, and unexpected generation, respectively. conditions. The main reason for the scene similarity in (a) is that the text specifies background and

Table 2: FID, CAS, and YOLO Score comparisons of different methods on image generation. The best and second-best results are highlighted in **bold** and underlined.

Methods	Conditions	Venue & Year	FID ↓	CAS ↑	YOLO Score ↑ mAP/mAP ₅₀ /mAP ₇₅
SD1.5 [30]	Text	CVPR2022	27.65	_	_
LayoutDiff [50] GLIGEN [18] InstDiff [38] RC-L2I [5] Ours	Box Text + Box Text + Box + Mask Text + Box + Mask Text + Box + Mask	CVPR2023 CVPR2023 CVPR2024 NeurIPS2024	18.17 20.02 19.43 25.63 18.05	63.77 <u>77.06</u> 76.65 74.84 79.34	0.83/2.68/0.29 12.74/30.36/8.99 12.46/29.73/9.07 8.75/22.99/5.48 17.08/39.14/13.52

Table 5: Ablation study of different generation configurations.

ObjCA WatCA	BiCA		FID ↓	CAS ↑	YOLO Score ↑	
Objek	WatCA	Obj2WatCA	Wat2ObjCA	TID \	CAS	$mAP/mAP_{50}/mAP_{75}$
√				21.44	76.23	10.69/26.01/6.99
\checkmark	\checkmark			19.57	78.15	13.37/29.60/10.78
\checkmark	\checkmark	\checkmark		18.35	78.00	12.52/27.58/10.06
\checkmark	\checkmark		\checkmark	18.37	78.68	15.60/36.13/12.09
\checkmark	\checkmark	\checkmark	\checkmark	18.05	79.34	17.08/39.14/13.52

(b) Visualization of Text-Free Conditional Generation Results

hydrological conditions, while the unspecified objects exhibit diversity. 10

03 Experimental Evaluation

Data Augmentation Results

Table 3: mAP and mAP₅₀ comparison with/without generated data.

Model	mAP ↑	mAP ₅₀ ↑
YOLOv10 [37]	39.99	61.13
+Gen Data	43.62 (+9.08 %)	65.50 (+ 7.15 %)
YOLOv11 [16]	41.29	62.51
+Gen Data	44.43 (+ 7.60 %)	66.15 (+ 5.82 %)
YOLOv12 [35]	39.06	60.53
+Gen Data	42.91 (+ 9.86 %)	63.85 (+ 5.48 %)

Table 4: mAP and mAP₅₀ comparison with/without generated data. † denotes fine-tuned on our dataset.

Model	mAP↑	mAP ₅₀ ↑
Grounding DINO	8.42	12.60
Grounding DINO [†]	65.03	86.12
+Gen Data	68.04 (+4.63%)	89.86 (+4.34%)

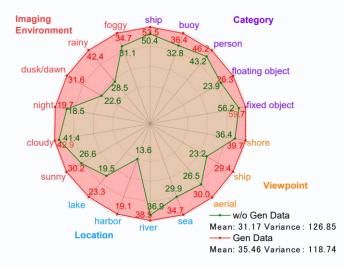


Figure 5: YOLOv11 accuracy improvement visualization across various attributes.

Table 6: Ablation study of different sampling strategies.

Methods	Number	mAP ↑	mAP ₅₀ ↑
N/O	0	39.99	61.13
Random	5,000 10,000	41.48 43.31	63.19 64.95
AAS	5,000 10,000	43.11 43.62	64.70 65.50

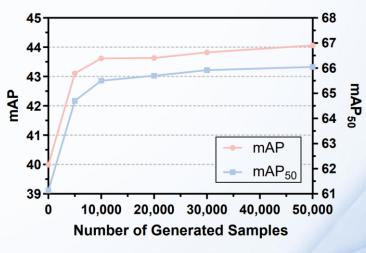


Figure 6: Correlation between detection accuracy and the number of generated samples used.

Contribution of our Work

- **Generative Framework:** We introduce X-to-Maritime, a novel framework incorporating a Bidirectional Object-Water Attention module to generate realistic maritime scenes under multi-condition inputs.
- ◆ Sampling Strategy: We propose an Attribute-dependent Active Sampling approach that dynamically estimates training difficulty across semantic dimensions to select high-value synthetic samples.
- **Benchmark Dataset:** We construct the Maritime Generation Dataset (MGD), the first dedicated benchmark for generative maritime learning, featuring comprehensive annotations and diverse scenarios

Code (Github)

Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection

Yu Guo^{1,3}, Shengfeng He^{2,*}, Yuxu Lu⁴, Haonan An¹, Yihang Tao¹, Huilin Zhu⁵, Jingxian Liu^{3,*}, Yuguang Fang¹

¹City University of Hong Kong, ²Singapore Management University, ³Wuhan University of Technology, ⁴The Hong Kong Polytechnic University, ⁵Wuhan University of Science and Technology