KVLink: Accelerating Large Language Models via Efficient KV Cache Reuse

Jingbo Yang* ¹, Bairu Hou* ¹, Wei Wei ², Yujia Bao ², Shiyu Chang ¹

- 1. UC Santa Barbara 2. Center for Advanced Al, Accenture
- * Equal Contribution

Motivation

 When building RAG system, context of different queries will be overlapped

Question1: "When was the Eiffel Tower built?"

Retrieved Document 1: "The Eiffel Tower is located in Paris, France."

Retrieved Document 2: "Construction of the Eiffel Tower was completed in 1889."

Question2: "How tall is the Eiffel Tower?"

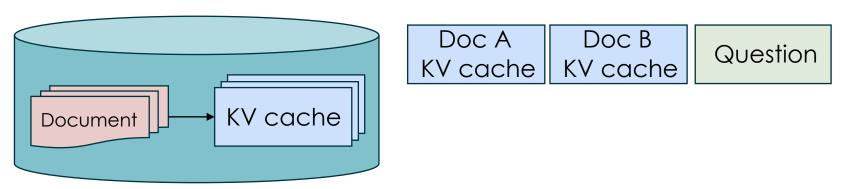
Retrieved Document 1: "The Eiffel Tower is located in Paris, France ."

Retrieved Document 2: "The Eiffel Tower stands about 300 meters tall."

KV Cache Reuse

 If we have a pool of KV for each document, we can directly reuse them.

KV reuse



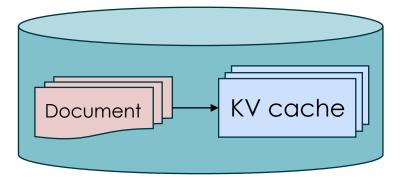
KV Cache Reuse

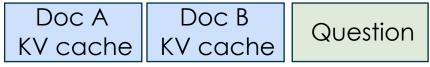
 If we have a pool of KV for each document, we can directly reuse them.

Standard decoding Doc A Doc B Question

KV reuse

However, they are not identical. We want to minimize their discrepancy.





Position Discrepancy

 Retrieved documents can be at any position in the new prompt, so we need to solve position discrepancy first.

a) Cache storing.

Document

Two position Layer N

KV w/o position Layer N

KV w/o position Layer 1

Rotate with correct position

KV w/o position

WV w/o position

KV w/o position

WV w/o position

KV w/o position

KV w/o position

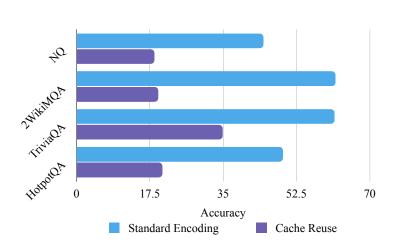
KV w/o position

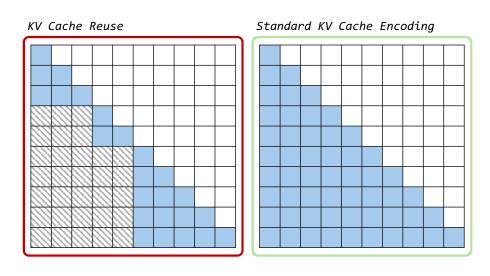
KV w/o position

Layer 1

Lost Cross Attention

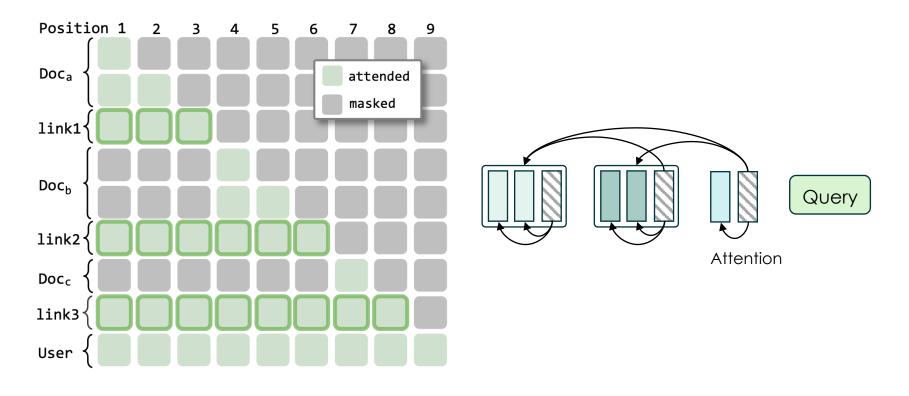
- Although we fix the position discrepancy, we still can observe a huge performance degradation when reusing KV cache.
- This is because, the attention between the documents is lost, compared to the standard decoding.





Our solution – inference with KVLink

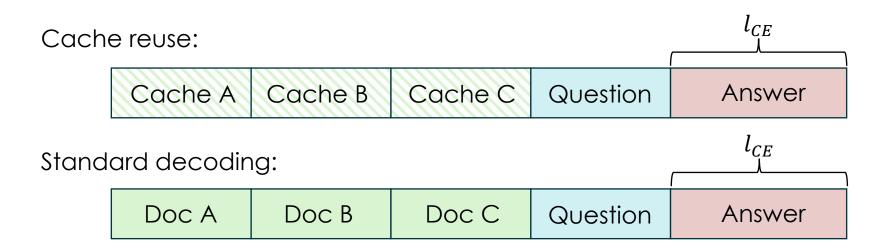
 We propose adding some special "link" tokens (with standard attention) between the documents.



How to train link tokens?

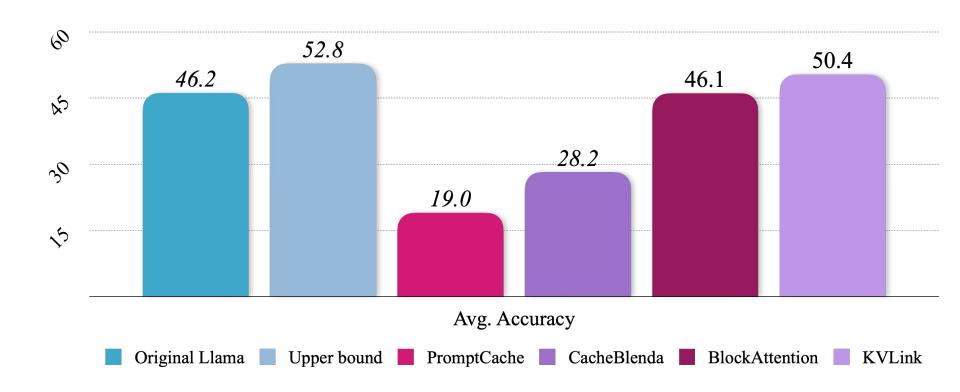
 We find-tuned our model using a mixture of datasets with two objectives.

	Separately Encoded KV Cache			Standard Decoding		
Task	Retrieval-aug. QA	Multi-turn conv.	Summarization	Retrieval-aug. QA	SFT	Pre-training
Data Source	TriviaQA, 2WikiMQA	DaringAnteater	XSum	TriviaQA, 2WikiMQA	Tulu3-sft-mixture	Fineweb
Percentage	10%	25%	5%	10%	30%	20%
Total # of Samples	20,000	92,700	17,345	20,000	732,100	10,000,000



Results

 KVLink achieves SOTA performance across 5 QA datasets (NQ, 2WikiMQA, TriviaQA, HotpotQA, MuSiQue)



Results

Pre-filling time with a 5,000-token context using Llama 3.1-8B model

