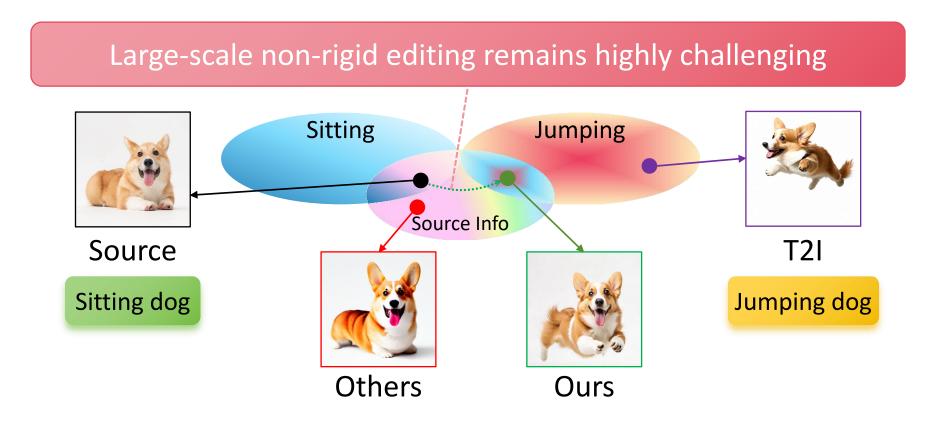


FSI-Edit: Frequency and Stochasticity Injection for Flexible Diffusion-Based Image Editing

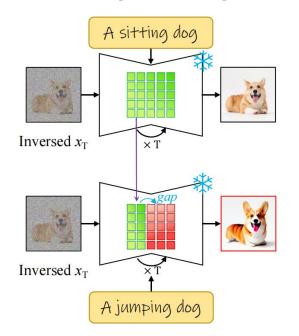
Kaixiang Yang¹, Xin Li¹, Yuxi Li¹, Qiang Li, Zhiwei Wang^{*}


Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology

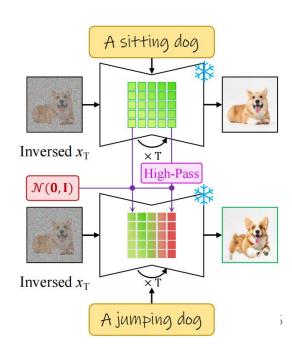
1: Co-first authors, *: Corresponding author.

- 1 Background
- 2 Methods
- 3 Experiments
- 4 Conclusion

1.1 Image Editing


- Image editing modify *source image* according to *target textual prompt* while preserving the unedited regions
- Non-rigid editing substantial modifications including object addition, removal, or significant pose alteration

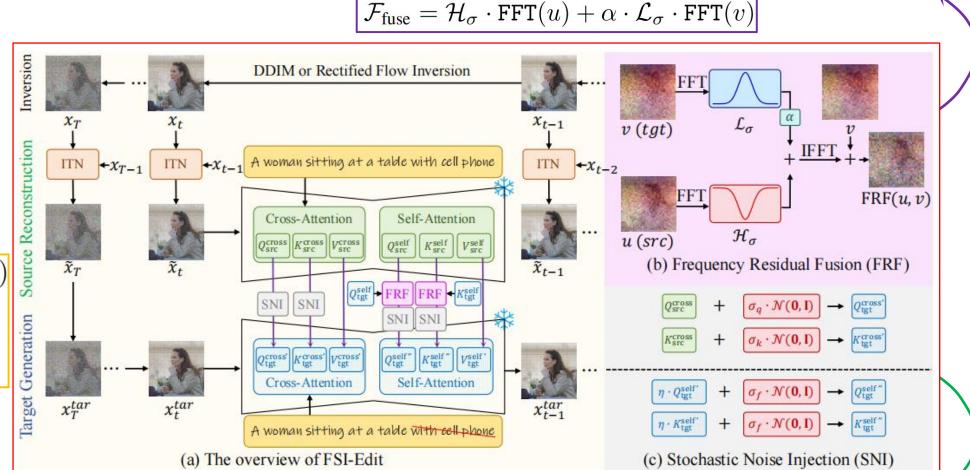
- 1 Background
- Methods
- 3 Experiments
- 4 Conclusion


2.1 Limitation in previous methods

Editing Paradigm Comparison

- Semantic gap: directly inject attention features from the reconstruction branch to target branch
- Constrained generative capacity: excessive reliance on the source limits the model's ability to fully unleash its generative potential on non-rigid editing

- Frequency residual fusion: selectively inject high-frequency component from source, avoiding interfe-rence from structural infor-mation
- ✓ Stochastic noise injection: controlled perturbation enriches the latent space and empowers the model to perform substantial structural changes


2.2 Framework

☐ FSI-Edit

✓ ITN: Fusing lowfrequency guidance from early timestep to enhance reconstruction

$$\tilde{x}_{t} = \text{IFFT}(\mathcal{H}_{\sigma} \cdot \text{FFT}(x_{t})) + \mathcal{L}_{\sigma} \cdot \text{FFT}(x_{t-1})) + \sigma_{x} \cdot \mathcal{N}(\mathbf{0}, \mathbf{I})$$

✓ FRF: Residual injection of source high-frequency details into the target.

✓ SNI: Injecting bounded noise to unleash the generative cap-acity of the base model

$$K_{ t tgt}^{ t cross'} = K_{ t src}^{ t cross} + \sigma_k \cdot \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$Q_{ exttt{tgt}}^{ exttt{cross}'} = Q_{ exttt{src}}^{ exttt{cross}} + \sigma_q \cdot \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 6

- 1 Background
- 2 Methods
- 3 Experiments
- 4 Conclusion

3.1 Datasets

- Dataset
 - 1. PIE-Bench^[1]
 - 2. 700 image-prompt pairs across 10 diverse editing categories

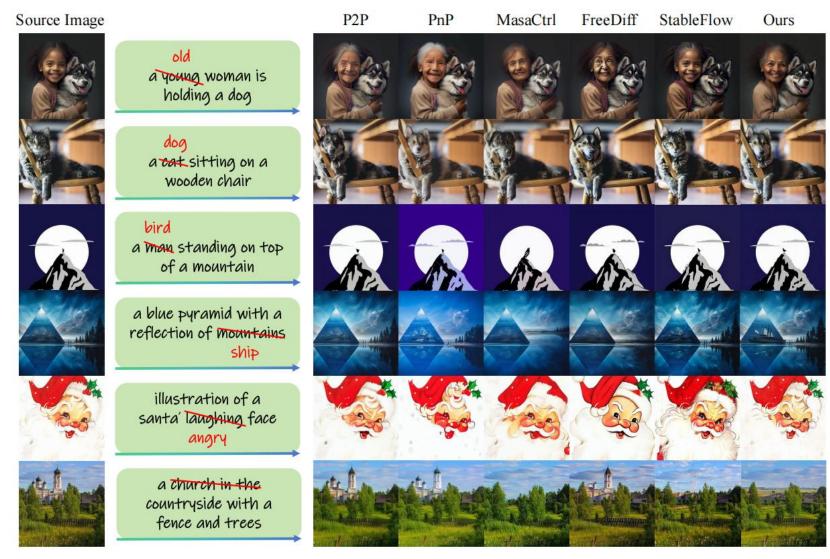
- Metrics
 - Structural SimilarityStructure Distance
 - Content Preservation
 PSNR, LPIPS, MSE, SSIM
 - Text-Image Consistency
 CLIP similarity

- original_prompt:

 a slanted mountain bicycle on the road in front of a building
- editing_prompt:

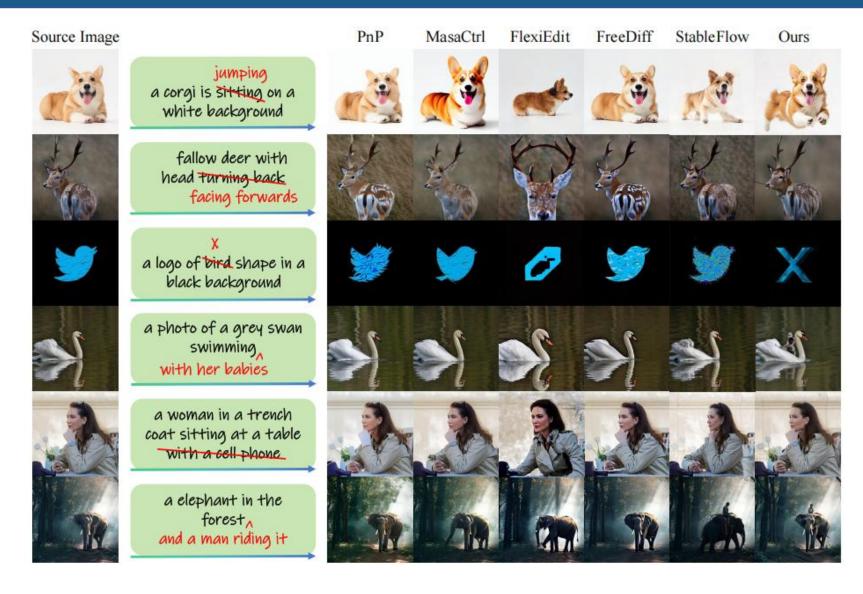
 a slanted [rusty] mountain bicycle on

 the road in front of a building


3.2 Comparison with SOTA

Method	Model	Structure	Background Preservation				CLIP Similarity	
		$Distance_{\times 10^3} \downarrow$	$PSNR\uparrow$	$LPIPS_{\times 10^3} \downarrow$	$MSE_{\times 10^4} \downarrow$	$SSIM_{\times 10^2} \uparrow$	$Whole \uparrow$	$Edited \uparrow$
P2P [8]	UNet	11.65	27.22	54.55	32.86	84.76	25.02	22.10
PnP 9		24.29	22.46	106.06	80.45	79.68	25.41	22.62
MasaCtrl [19]		24.70	22.64	87.94	81.09	81.33	24.38	21.35
FlexiEdit [16]		22.13	25.74	80.45	58.45	82.62	25.15	22.87
FreeDiff [34]		18.70	24.73	89.76	55.32	81.68	25.03	22.12
Ours-LDM		15.84	24.69	88.42	52.21	81.93	25.46	22.30
RF-Inv [39]	Transformer	48.76	19.51	195.85	155.74	68.95	25.11	22.50
StableFlow [40]		19.24	23.04	76.94	84.85	87.22	24.30	21.28
RF-Edit 31		24.45	24.41	113.44	56.46	83.84	25.03	22.28
DCEdit [33]		22.36	25.41	94.17	48.09	85.60	25.47	22.71
Ours-DiT*		13.71	26.61	85.44	36.50	86.25	25.69	22.50

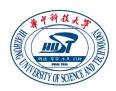
^{*:} Ours runs on an RTX 4090 GPU (24 GB memory) and completes within 20 seconds.

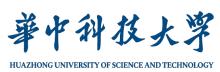

★ The results show that our method better balances background fidelity in unedited areas and semantic consistency in edited regions.

3.3 Visualization

→ Our edited images visually align better with the given editing instructions, producing more satisfactory visual results.

3.3 Visualization




→ Our method achieves superior visual quality in non-rigid editing tasks.

- 1 Background
- 2 Methods
- 3 Experiments
- 4 Conclusion

4 Conclusion

- We identify and address two core limitations of most current image editing methods for non-rigid edits, e.g., semantic inconsistency between reconstruction and generation features, and insufficient generative flexibility due to strong image priors.
- We propose FSI-Edit, featuring a new frequency residual fusion module that selectively transfers high-frequency details for more accurate feature alignment, and a stochastic noise injection strategy that expands the generation space to enable more precise and flexible structural transformations.
- We conduct extensive experiments on PIE-Bench benchmark, and the comparison results demonstrate that FSI-Edit significantly outperforms existing methods on both rigid and non-rigid editing tasks, confirming its effectiveness and generalizability across diverse editing scenarios.

Thank you

FSI-Edit: Frequency and Stochasticity Injection for Flexible Diffusion-Based Image Editing

Kaixiang Yang¹, Xin Li¹, Yuxi Li¹, Qiang Li, Zhiwei Wang^{*}

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology

2025-12-4 14